首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of electric field on chlorophyll fluorescence is considered on the basis of the reversible radical pair model. The hypothesis is presented that the electric fields generated by photosynthetic charge separation in reaction centers and propagated laterally through the thylakoid lumen are associated with changes in chlorophyll fluorescence yield.  相似文献   

2.
This mini review presents current topics of discussion about photosystem (PS) I and PS II of photosynthesis in the Acaryochloris marina. A. marina is a photosynthetic cyanobacterium in which chlorophyll (Chl) d is the major antenna pigment (>95%). However, Chl a is always present in a few percent. Chl d absorbs light with a wavelength up to 30 nm red-shifted from Chl a. Therefore, the chlorophyll species of the special pair in PS II has been a matter of debate because if Chl d was the special pair component, the overall energetics must be different in A. marina. The history of this field indicates that a purified sample is necessary for the reliable identification and characterization of the special pair. In view of the spectroscopic data and the redox potential of pheophytin, we discuss the nature of special pair constituents and the localization of the enigmatic Chl a.  相似文献   

3.
In an attempt to uncover electric field interactions between PS I and PS II during their functioning, fluorescence induction curves were measured on hydroxylamine-treated thylakoids of Chenopodium album under conditions ensuring low and high levels of photogenerated membrane potentials. In parallel experiments with Peperomia metallica chloroplasts, the photocurrents were measured with patch-clamp electrodes and served as indicator of electrogenic activity of thylakoid membranes in continuous light. Inhibition of linear electron flow at PS II donor side by hydroxylamine (0.1 mM) eliminated a slow rise of chlorophyll fluorescence to a peak level and suppressed photoelectrogenesis. Activation of PS I-dependent electron transport using cofactors of either cyclic (phenazine methosulfate) or noncyclic electron transport (reduced TMPD or DCPIP in combination with methyl viologen) restored photoelectrogenesis in hydroxylamine-treated chloroplasts and led to reappearance of slow components in the fluorescence induction curve. Exposure of thylakoids to valinomycin reduced the peak fluorescence in the presence of KCl but not in the absence of KCl. Combined application of valinomycin and nigericin in the presence of KCl exerted stronger suppression of fluorescence than valinomycin alone but was ineffective in the absence of KCl. In samples treated with hydroxylamine and PS I cofactors (DCPIP/ascorbate and methyl viologen), preillumination with a single-turnover flash or a multiturnover pulse shifted the induction curves of both membrane potential and chlorophyll fluorescence to shorter times, which confirms the supposed influence of PS I-generated electrical field on PS II fluorescence. A model is presented that describes modulating effect of the membrane potential on chlorophyll fluorescence and roughly simulates the fluorescence induction curves measured at low and high membrane potentials.  相似文献   

4.
The energy and oscillator strength of electronic transitions of chlorophyll (Chl)-amino acid complexes were calculated by using molecular orbital methods. The energies varied widely with coordinated amino acids and the difference between the maximum and minimum energy was about 830 cm-1. This energy difference was comparable with the spreading of absorption bands for light-harvesting Chl-protein complexes of photosystem II (LHC II) of green plants. The feature of the Qy band for pea LHC II was interpreted with the aid of the calculated energies and oscillator strengths. Four spectral components of the band were assigned to individual Chl-amino acid complexes.  相似文献   

5.
The reaction center chlorophylls a (Chla) of photosystem II (PSII) are composed of six Chla molecules including the special pair Chla P(D1)/P(D2) harbored by the D1/D2 heterodimer. They serve as the ultimate electron abstractors for water oxidation in the oxygen-evolving Mn(4)CaO(5) cluster. Using the PSII crystal structure analyzed at 1.9 ? resolution, the redox potentials of P(D1)/P(D2) for one-electron oxidation (E(m)) were calculated by considering all PSII subunits and the protonation pattern of all titratable residues. The E(m)(Chla) values were calculated to be 1015-1132 mV for P(D1) and 1141-1201 mV for P(D2), depending on the protonation state of the Mn(4)CaO(5) cluster. The results showed that E(m)(P(D1)) was lower than E(m)(P(D2)), favoring localization of the charge of the cationic state more on P(D1). The P(D1)(?+)/P(D2)(?+) charge ratio determined by the large-scale QM/MM calculations with the explicit PSII protein environment yielded a P(D1)(?+)/P(D2)(?+) ratio of ~80/~20, which was found to be due to the asymmetry in electrostatic characters of several conserved D1/D2 residue pairs that cause the E(m)(P(D1))/E(m)(P(D2)) difference, e.g., D1-Asn181/D2-Arg180, D1-Asn298/D2-Arg294, D1-Asp61/D2-His61, D1-Glu189/D2-Phe188, and D1-Asp170/D2-Phe169. The larger P(D1)(?+) population than P(D2)(?+) appears to be an inevitable fate of the intact PSII that possesses water oxidation activity.  相似文献   

6.
When the primary electron-donation pathway from the water-oxidation complex in photosystem II (PS II) is inhibited, chlorophyll (Chl(Z) and Chl(D)), beta-carotene (Car) and cytochrome b(559) are alternate electron donors that are believed to function in a photoprotection mechanism. Previous studies have demonstrated that high-frequency EPR spectroscopy (at 130 GHz), together with deuteration of PS II, yields resolved Car(+) and Chl(+) EPR signals (Lakshmi et al. J. Phys. Chem. B 2000, 104, 10 445-10 448). The present study describes the use of pulsed high-frequency EPR spectroscopy to measure the location of the carotenoid and chlorophyll radicals relative to other paramagnetic cofactors in Synechococcus lividus PS II. The spin-lattice relaxation rates of the Car(+) and Chl(+) radicals are measured in manganese-depleted and manganese-depleted, cyanide-treated PS II; in these samples, the non-heme Fe(II) is high-spin (S = 2) and low-spin (S = 0), respectively. The Car(+) and Chl(+) radicals exhibit dipolar-enhanced relaxation rates in the presence of high-spin (S = 2) Fe(II) that are eliminated when the Fe(II) is low-spin (S = 0). The relaxation enhancements of the Car(+) and Chl(+) by the non-heme Fe(II) are smaller than the relaxation enhancement of Tyr(D)(*) and P(865)(+) by the non-heme Fe(II) in PS II and in the reaction center from Rhodobactersphaeroides, respectively, indicating that the Car(+)-Fe(II) and Chl(+)-Fe(II) distances are greater than the known Tyr(D)(*)-Fe(II) and P(865)(+)-Fe(II) distances. The Car(+) radical exhibits a greater relaxation enhancement by Fe(II) than the Chl(+) radical, consistent with Car being an earlier electron donor to P(680)(+) than Chl. On the basis of the distance estimates obtained in the present study and by analogy to carotenoid-binding sites in other pigment-protein complexes, possible binding sites are discussed for the Car cofactors in PS II. The relative location of Car(+) and Chl(+) radicals determined in this study provides valuable insight into the sequence of electron transfers in the alternate electron-donation pathways of PS II.  相似文献   

7.
8.
Fluorescence induction curves (F(t)) in low intensity 1s light pulses have been measured in leaf discs in the presence and absence of valinomycin (VMC). Addition of VMC causes: (i) no effect on the initial fluorescence level Fo and the initial (O-J) phase of F(t) in the 0.01-1 ms time range. (ii) An approximately 10% decrease in the maximal fluorescence Fm in the light reached at the P level in the O-J-I-P induction curve. (iii) Nearly twofold increase in the rate and extent of the F(t) rise in the J-I phase in the 1-50 ms time range. (iv) A 60-70% decrease in the rise (I-P phase) in the 50-1000 ms time range with no appreciable effect, if at all, on the rate. System analysis of F(t) in terms of rate constants of electron transfer at donor and acceptor sides have been done using the Three State Trapping Model (TSTM). This reveals that VMC causes: (i) no, or very little effect on rate constants of e-transfer reactions powered by PSII. (ii) A manifold lower rate constant of radical pair recombination (k(-1)) in the light as compared to that in the control. The low rate constant of radical pair recombination in the reaction center (RC) in the presence of VMC is reflected by a substantial increase in the nonzero trapping efficiency in RCs in which the primary quinone acceptor (Q(A)) is reduced (semi-open centers). This causes an increase in their rate of closure and in the overall trapping efficiency. Data suggest evidence that membrane chaotropic agents like VMC abolish the stimulation of the rate constant of radical pair recombination by light. This light stimulation that becomes apparent as an increase in Fo has been documented before [Biophys. J. 79 (2000) 26]. It has been ascribed to effects of (changes in) local electric fields in the vicinity of the RC. The decrease of the I-P phase is attributed to a decrease in the photoelectric trans-thylakoid potential in the presence of VMC. Such effects have been hypothesized and illustrated.  相似文献   

9.
Water splitting activity, the multiline EPR signal associated with S(2)-state of the CaMn(4)-cluster and the fast and slow phases of the induction curve of the millisecond delayed chlorophyll fluorescence from photosystem II (PSII) in the pH range of 4.5-8.5 were studied in the thylakoid membranes and purified PSII particles. It has been found that O(2) evolution and the multiline EPR signal were inhibited at acidic (pK approximately 5.3) and alkaline (pK approximately 8.1) pH values, and were maximal at pH 6.0-7.0. Our results indicate that the loss of O(2) evolution and the S(2)-state multiline EPR signal associated with the decrease of the millisecond delayed chlorophyll fluorescence only in alkaline region (pH 7.0-8.5). Possible correlations of the millisecond delayed chlorophyll fluorescence components with the donor side reactions in PSII are discussed.  相似文献   

10.
To investigate the light-harvesting properties of the Photosystem II chlorophyll (chl) a-b complexes (major light-harvesting complex of Photosystem II [LHCII], CP24, CP26, CP29) in a mature leaf under natural "daylight" illumination, the absorption spectra of the isolated complexes were converted into the photon absorption spectrum (1-T) within a leaf, using the approach of Rivadossi et al. ([1999] Photosynth. Res. 60, 209-215). In the Qy region, significant enhancement of light harvesting by the chl b electronic transitions, with respect to the absorption spectra (optical density [OD]), as well as a large and generalized increase (between two- and four-fold) associated with the vibrational bands of both chl a and b, was observed, which acquires an important light-harvesting role (approximately 30-40% of total). In the Soret region, a small increase in light harvesting by chl b was indicated. To gain more detailed information on these aspects the light harvesting of LHCII in a leaf was investigated. This required describing the pigment absorption (chl a and b, carotenoids) in the LHCII OD spectrum in terms of spectral subbands, which were subsequently used to estimate the relative light harvesting of each pigment type in LHCII of a leaf. When the entire visible spectral interval between 400 and 730 nm is considered, the chl a light harvesting is essentially unchanged with respect to the absorption spectrum (OD) of isolated LHCII, whereas the chl b contribution is 20% higher and the carotenoids are 33% lower. The relative enhancement of the chl b absorption is principally associated with the Qy electronic transition region, the light-harvesting contribution of which becomes prominent in the leaf.  相似文献   

11.
A method for data acquisition based on recording of light signal from a conventional phophoroscope fluorometer with high-speed digitalization is proposed to extract more information from a delayed chlorophyll a fluorescence (DF) signal. During the signal processing from all points registered by the fluorometer, we obtain simultaneously a large number of induction curves of DF decaying at different time ranges. In addition, it is possible to register a series of dark relaxation kinetics of DF, recorded at different moments during the induction period or at different temperatures. This allows the evaluation of the contribution of DF kinetic components during the induction period or at different temperatures and the comparison between DF signals registered with different phophoroscopes. With the phosphoroscope system used in this study, we have shown that the contribution of the millisecond components (with lifetimes 0.6 and 2-4 ms) predominates during the first second of the induction period. After 1 s of illumination, the amplitudes of the 0.6 ms and 2-4 ms components and of the slower one (with lifetime more than 10 ms) become approximately equal. The change in lifetime of the different components during the induction and during gradual heating is also observed. It is shown that all registered DF kinetic components have different temperature dependences.  相似文献   

12.
We present a theoretical analysis of the flash-induced absorbance difference spectrum assigned to the formation of the secondary radical pair P(+)QA(-) in photosystem II of the chlorophyll d-containing cyanobacterium Acaryochloris marina. An exciton Hamiltonian determined previously for chlorophyll a-containing photosystem II complexes is modified to take into account the occupancy of certain binding sites by chlorophyll d instead of chlorophyll a. Different assignments of the reaction center pigments to chlorophyll a or d from the literature are investigated in the calculation of the absorbance difference spectrum. A quantitative explanation of the experimental data requires one chlorophyll a molecule per reaction center, located at the site of P(D1). The remaining sites are occupied by chlorophyll d and pheophytin a. By far, the lowest site energy is found for the accessory chlorophyll of the D1 branch, Chl(D1), which represents the sink of excitation energy and therefore the primary electron donor. The cationic state is stabilized at the chlorophyll a, which drives the oxidation of water.  相似文献   

13.
The electronic excited-state behavior of photosystem II (PSII) in Mantoniella squamata, as influenced by the xanthophyll cycle and the transthylakoid pH gradient (delta pH), was examined in vivo. Mantoniella is distinguished from other photosynthetic organisms by two main features namely (1) a unique light-harvesting complex that serves both photosystems I (PSI) and II (PSII); and (2) a violaxanthin (V) cycle that undergoes only one de-epoxidation step in excess light to accumulate the monoepoxide antheraxanthin (A) as opposed to the epoxide-free zeaxanthin (Z). The cells were treated first with high light to induce the delta pH and A accumulation, followed by herbicide-induced closure of PSII traps and a chilling treatment, to sustain and stabilize the delta pH and nigericin-sensitive fluorescence level in the dark. De-epoxidation was controlled with subsaturating concentrations of dithiothreitol (DTT) and was 5-10 times more sensitive to DTT than higher plant thylakoids. The PSII energy dissipation involved two steps: (1) the pH activation of the xanthophyll binding site that was associated with a narrowing and slight attenuation of the main 2 ns (ns = 10(-9) s) fluorescence lifetime distribution; and (2) the concentration-dependent binding of A to the activated binding site yielding a second distribution centered around 0.9 ns. Consistent with the model of Gilmore et al. (1998) (Biochemistry 37, 13,582-13,593), the fractional intensity of the 0.9 ns component depended almost entirely on the A concentration and correlated linearly with the decrease of the steady-state chlorophyll alpha fluorescence intensity.  相似文献   

14.
The efficient incorporation and assembly of calcium, chloride and manganese followed by photoactivation of the water-oxidizing complex (WOC) is a prerequisite for the unique water-splitting activity of photosystem II. This minireview summarizes the recent results on incorporation and storage of the inorganic cofactors, photoactivation of the WOC and assembly of the protein environment at the donor site of PSII in cyanobacteria with a special focus on the role of the Psb27 protein.  相似文献   

15.
Abstract— The bleaching of chlorophyll solutions by light in the presence of oxygen can be interrupted, and red intermediates can be precipitated by the use of highly nonpolar solvents in appropriate solvent mixtures. The precipitates are more highly oxygenated but retain phytol and a N-Mg ratio of 4:1. The NMR spectra indicate that the methine bridge and vinyl protons have been lost. Methyl ethyl maleimide is a product of chromic acid oxidation of the red precipitates. It is also found in the supernatant solution and in the fully bleached end product.  相似文献   

16.
Kinetic studies of photosystem II in photosynthesis   总被引:5,自引:0,他引:5  
Abstract— It appears that even if some kinetic aspects of the activation and stimulation phenomena of photosystem II remain not understood. the only interpretation we can propose involves the addition of the effect of two photoreactions on the same photochemical center. The main arguments we developed in favour of this hypothesis are: (1) the formation of one atom of oxygen requires the addition of the effect of two photo-reactions (one photoreaction per electron). (2) after a dark period two quanta must be absorbed by the same photochemical center in order to produce oxygen. (3) the existence of a form of the photochemical substrate in which energy is stored is proved by the fact that. after a preillumination by two flashes, the quantum requirement for the production of one molecule of oxygen can reach a value almost two times lower than the quantum requirement measured in stationary conditions.  相似文献   

17.
To study organization of the main light-harvesting chlorophyll a/b-protein complex of photosystem II (LHCII) from spinach thylakoid membranes at the level of trimeric subcomplexes, we have applied non-denaturing isoelectric focusing (ndIEF) in vertical, slab polyacrylamide gels. When analyzed by two consecutive ndIEF/electroelution runs, spinach BBY membrane preparations (PSII(alpha)-enriched, stacked thylakoid membranes) were resolved into nine fractions of 100% purity, labelled 1-9 in order of decreasing pI values. Seven of these fractions (3-9) were shown by absorption spectroscopy to stand for LHCII subcomplexes. The subcomplexes were established - by monitoring their circular dichroism spectra and comparing them to the spectra of native LHCII trimers and monomers - to be structurally intact trimers. The analysis of polypeptide composition of the subcomplexes in terms of apparent molecular masses and Lhcb genes' products led us to the conclusion that each of the subcomplexes might be a mixed population of closely similar individual trimers, comprising of permutations of Lhcb1 and Lhcb2 (subcomplexes 3-7) or Lhcb1, Lhcb2 and Lhcb3 (subcomplexes 8 and 9).  相似文献   

18.
19.
The effects of ultraviolet-B light on the level and steady-state phosphorylation of photosystem II proteins have been studied in barley wild type and its chlorophyll b-less mutant chlorina f2. In the wild type, ultraviolet-B radiation is found to promote dephosphorylation of all thylakoid phosphoproteins. In addition, for reaction-centre proteins D1 and D2, dephosphorylation is paralleled by degradation. Photosystem II core proteins in the mutant are not found to be significantly phosphorylated in any experimental conditions, and loss of D1 and D2 reaction-centre proteins is slightly faster than in the wild type. These results are consistent with the possibility that phosphorylation of reaction-centre proteins affects their stability, possibly by slowing down the rate of degradation, as in the case of visible light.  相似文献   

20.
We present a set of force field (FF) parameters compatible with the AMBER03 FF to describe five cofactors in photosystem II (PSII) of oxygenic photosynthetic organisms: plastoquinone‐9 (three redox forms), chlorophyll‐a, pheophytin‐a, heme‐b, and β‐carotene. The development of a reliable FF for these cofactors is an essential step for performing molecular dynamics simulations of PSII. Such simulations are important for the calculation of absorption spectrum and the further investigation of the electron and energy transfer processes. We have derived parameters for partial charges, bonds, angles, and dihedral‐angles from solid theoretical models using systematic quantum mechanics (QM) calculations. We have shown that the developed FF parameters are in good agreement with both ab initio QM and experimental structural data in small molecule crystals as well as protein complexes. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号