首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
By using the polarization density matrix for a neutron in a magnetic field, the axion luminosity of magnetic neutron stars that is associated with the flip of the anomalous magnetic moment of degenerate nonrelativistic neutrons is calculated. It is shown that, at values of the magnetic-field induction in the region B ≳ 1018 G, this mechanism of axion emission is dominant in “young” neutron stars of temperature about a few tens of MeV units. At B ∼ 1017 G, it is one of the basic mechanisms. The Fermi energy of a degenerate neutron gas in a magnetic field is found, and it is shown that there is no such mechanism of axion emission in the degenerate case.  相似文献   

2.
Hypermassive neutron stars (HMNSs)--equilibrium configurations supported against collapse by rapid differential rotation--are possible transient remnants of binary neutron-star mergers. Using newly developed codes for magnetohydrodynamic simulations in dynamical spacetimes, we are able to track the evolution of a magnetized HMNS in full general relativity for the first time. We find that secular angular momentum transport due to magnetic braking and the magnetorotational instability results in the collapse of an HMNS to a rotating black hole, accompanied by a gravitational wave burst. The nascent black hole is surrounded by a hot, massive torus undergoing quasistationary accretion and a collimated magnetic field. This scenario suggests that HMNS collapse is a possible candidate for the central engine of short gamma-ray bursts.  相似文献   

3.
In contrast to gravity in the weak-field regime, which has been subject to numerous experimental tests, gravity in the strong-field regime is largely unconstrained by observations. We show that gravity theories that pass solar system tests, but that diverge from general relativity in the strong-field regime, predict neutron stars with significantly different properties than their general relativistic counterparts. The range of redshfits of surface atomic lines predicted by such theories is significantly wider than the uncertainty introduced by our lack of knowledge of the equation of state of ultradense matter. Measurements of such lines with x-ray observatories can thus put new constraints on strong-field gravity.  相似文献   

4.
The basic theoretical ideas in the models of regularly pulsating X-ray sources are discussed, and put in relation to the observations. The topics covered include physics of the magnetosphere of an accreting neutron star, hydrodynamics of the accretion column, physical processes close to the surface of the neutron star such as proton-electron collisions, photon-electron interactions.  相似文献   

5.
Numerical simulations for the merger of binary neutron stars are performed in full general relativity incorporating a finite-temperature (Shen's) equation of state (EOS) and neutrino cooling for the first time. It is found that for this stiff EOS, a hypermassive neutron star (HMNS) with a long lifetime (?10 ms) is the outcome for the total mass ?3.0M(⊙). It is shown that the typical total neutrino luminosity of the HMNS is ~3-8×10(53) erg/s and the effective amplitude of gravitational waves from the HMNS is 4-6×10(-22) at f=2.1-2.5 kHz for a source distance of 100 Mpc. We also present the neutrino luminosity curve when a black hole is formed for the first time.  相似文献   

6.
The paper gives an overall picture of accreting neutron stars as obtained from X-ray observations. Theories of X-ray binaries, accreting processes, and X-ray emission mechanisms are reviewed to give qualitative understanding of physics relevant to X-rays from accreting neutron stars. Some quantitative results under simplified conditions are given for the application to the interpretation of observational results. Recent results obtained by Japanese X-ray astronomy satellites HAKUCHO and TENMA are presented in comparison with theoretical models.  相似文献   

7.
8.
9.
《Physics letters. [Part B]》1988,203(4):469-473
The emission rate of the invisible axion due to electron-related processes is evaluated in detail at high temperatures (T∼20 MeV) and at high densities (ρ∼1014g cm−3), relevant to the supernova explosion. If one properly treats relativistic kinematics, no useful bound on the Peccei-Quinn symmetry breaking scale (fA) is obtained from SN1987A, contrary to the recent argument by others. A brief comment on the bound from the neutron-neutron axion bremsstrahlung process is also made.  相似文献   

10.
We discuss different ways that neutron stars can generate gravitational waves, describe recent improvements in modelling the relevant scenarios in the context of improving detector sensitivity, and show how observations are beginning to test our understanding of fundamental physics. The main purpose of the discussion is to establish promising science goals for third-generation ground-based detectors, like the Einstein Telescope, and identify the various challenges that need to be met if we want to use gravitational-wave data to probe neutron star physics.  相似文献   

11.
The rates of axion emission by nucleon–nucleon bremsstrahlung are calculated with the inclusion of the full momentum contribution from a nuclear one pion exchange (OPE) potential. The contributions of the neutron–neutron (nn), proton–proton ( pp) and neutron–proton (np) processes in both the non-degenerate and degenerate limits are explicitly given. We find that the finite-momentum corrections to the emissivities are quantitatively significant for the non-degenerate regime and temperature-dependent, and should affect the existing axion mass bounds. The trend of these nuclear effects is to diminish the emissivities.  相似文献   

12.
13.
The gravity-mode (g-mode) eigenfrequencies of newly born strange quark stars (SQSs) and neutron stars (NSs) are studied. It is found that the eigenfrequencies in SQSs are much lower than those in NSs by almost 1 order of magnitude, since the components of a SQS are all extremely relativistic particles while nucleons in a NS are nonrelativistic. We therefore propose that newly born SQSs can be distinguished from the NSs by detecting the eigenfrequencies of the g-mode pulsations of supernovae cores through gravitational radiation by LIGO-class detectors.  相似文献   

14.
Neutron stars are efficient accelerators for bringing charges up to relativistic energies. We show that if positive ions are accelerated to approximately 1 PeV near the surface of a young neutron star (t(age) less than or nearly 10(5) yr), protons interacting with the star's radiation field produce beamed mu neutrinos with energies of approximately 50 TeV that could produce the brightest neutrino sources at these energies yet proposed. These neutrinos would be coincident with the radio beam, so that, if the star is detected as a radio pulsar, the neutrino beam will sweep the Earth; the star would be a "neutrino pulsar." Looking for nu(mu) emission from young neutron stars will provide a valuable probe of the energetics of the neutron star magnetosphere.  相似文献   

15.
We investigate the photon emission from the electrosphere of a quark star. We show that at temperatures T ≈ 0.1–1 MeV, the dominating mechanism is the bremsstrahlung due to bending of electron trajectories in the mean Coulomb field of the electrosphere. The radiated energy for this mechanism is much larger than that for the Bethe-Heitler bremsstrahlung. The energy flux from the mean field bremsstrahlung also exceeds the one from the tunnel e + e ? pair creation. We demonstrate that the LPM suppression of the photon emission is negligible.  相似文献   

16.
17.
S V Dhurandhar 《Pramana》2000,55(4):545-558
Rotating neutron stars are one of the important sources of gravitational waves (GW) for the ground based as well as space based detectors. Since the waves are emitted continuously, the source is termed as a continuous gravitational wave (CGW) source. The expected weakness of the signal requires long integration times (∼year). The data analysis problem involves tracking the phase coherently over such large integration times, which makes it the most computationally intensive problem among all GW sources envisaged. In this article, the general problem of data analysis is discussed, and more so, in the context of searching for CGW sources orbiting another companion object. The problem is important because there are several pulsars, which could be deemed to be CGW sources orbiting another companion star. Differential geometric techniques for data analysis are described and used to obtain computational costs. These results are applied to known systems to assess whether such systems are detectable with current (or near future) computing resources.  相似文献   

18.
A simple correlation based on the gross theory ofβ-decay is derived between the neutron emission probabilitiesP n of delayed neutron precursors, theirβ-decay energies and the neutron binding energies of the daughter nuclei. The correlation is shown to be valid for delayed neutron precursors among the fission products. TheP n-values of several expected but still unidentified neutron precursors are estimated together with their contributions to the delayed neutron groups in thermal-neutron induced fission of235U. Some aspects of theβ-strength function for transitions into highly excited states are discussed.  相似文献   

19.
Polarized neutron imaging has recently been introduced as an efficient method to three-dimensionally visualize and measure magnetic fields even in the bulk of massive objects. Here we introduce a spin-echo approach for polarized neutron imaging, which has the potential to overcome some drawbacks of the first attempts, namely to deal with strong fields, arbitrary field directions and quantification. Furthermore our novel approach increases the efficiency of quantitative studies due to relaxed monochromatisation requirements for spin-echo neutron imaging and with respect to additional information available in the recorded images, which allows for straightforward quantification in many cases.  相似文献   

20.
We report the first observation of polarized emission from a rhenium-phenanthroline complex, Re(CO)3(phen)Cl. Highly luminescent rhenium complexes are known, with quantum yields near 0.5 and lifetimes in excess of 10 s. The detection of polarized emission suggests the use of rhenium complexes as probes of the hydrodynamics of large macromolecular complexes and for use in fluorescence polarization immunoassays with gated detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号