首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the theory and the calculation method developed previously, numerical experiments on the study of dispersion of populations of a multilevel atomic system in strong fields of laser radiation in resonance with adjacent transitions and in a constant magnetic field are conducted. The effect of the magnetic field strength on the character of coherent population trapping in a multilevel system is studied. It is shown that the effect, depending on the magnetic field strength, may be observed for both and for one of the magnetic sublevels of the level that is doubly degenerate in the magnetic quantum number, for which resonance fluorescence is studied. The possibility of obtaining population inversion for magnetic sublevels in the excited state of a multilevel atom under an appropriate choice of parameters is demonstrated.  相似文献   

2.
The magnetic properties of a nanotube are investigated using a model in which the helical symmetry of the nanotube is governed by an extended δ potential. The magnetic moment of the system is studied as a function of the magnetic flux. It is demonstrated that the equilibrium magnetic moment at a large amplitude of the δ potential is a smooth function of the magnetic flux. An expression is derived for the magnetic moment induced in the given system for the case in which the electron current in a ballistic regime passes through the system.  相似文献   

3.
The paper addresses the linear stability to axisymmetric perturbations of an incompressible nonideal fluid between two rotating coaxial infinitely long cylinders in a nonuniform axial magnetic field. For conducting cylinders, the results for uniform and nonuniform magnetic fields are qualitatively identical. This is also observed for nonconducting cylinders in a magnetic field with a constant direction. Instability appears for nonconducting cylinders in a magnetic field with a varying direction, whose magnitude exceeds a certain critical value. This new instability also exists in the absence of rotation and, hence, is independent of its parameters. In addition, the critical magnetic field is independent of the magnetic Prandtl number, which facilitates experimental observation of the new instability.  相似文献   

4.
We report the change in the magnetic microstructure with the application of a magnetic field to a hole-doped manganite La0.81Sr0.19MnO3 in the mixed-phase state, in which ferromagnetic and paramagnetic phases coexist. In situ observations by electron holography have revealed that the applied magnetic field generates a "channel" of the magnetic flux in the paramagnetic phase region, thereby connecting the separated ferromagnetic domains. The magnetic flux density of this channel is estimated at 0.33 T, which is comparable with that of the ferromagnetic domains. The connection of the separated ferromagnetic domains appears to promote the conduction in the mixed-phase state as predicted for many manganites exhibiting the magnetoresistance effect.  相似文献   

5.
Akira Satoh 《Molecular physics》2013,111(18):2301-2311
We have developed a lattice Boltzmann method based on fluctuation hydrodynamics that is applicable to the flow problem of a particle suspension. In this method, we have introduced the viscosity-modifying method, rather than the velocity-scaling method, in which a modified viscosity is used for generating random forces in lattice Boltzmann simulations. The viscosity-modifying method is found to be applicable to the simulation of a magnetic particle suspension. We have applied this method to the two-dimensional Poiseuille flow of a magnetic suspension between two parallel walls in order to investigate the behavior of magnetic particles in a non-uniform applied magnetic field. From the results of the snapshots, the pair correlation function between the magnetic pole and the magnetic particles and the averaged local particle velocity and magnetization distributions, it was observed that the behavior of the magnetic particles changes significantly depending upon which factor dominates the phenomenon in the balance between the magnetic particle–particle interaction, the non-uniform applied magnetic field and the translational and rotational Brownian motion.  相似文献   

6.
An electrodynamic equation is derived for the magnetic field of an isolated Pearl vortex moving along an arbitrary trajectory in an ultrathin film of a magnetic superconductor. This equation is valid for any type of magnetic order in the magnetic subsystem. The magnetic structure of an isolated oscillating Pearl vortex is investigated in a thin magnetic superconductor film. Oscillations of the vortex and the presence of the magnetic subsystem are shown to lead to a significant renormalization of the vortex field in comparison with the Pearl solution. New phenomena of inverted satellites are predicted in which an inverted precursor appears in front of the vortex and an inverted wake is formed behind the latter at a distance of the order of 10λeff from the vortex center. These phenomena can be observed in magnetooptical experiments.  相似文献   

7.
A zonal magnetic field is found in a toroidal plasma. The magnetic field has a symmetric bandlike structure, which is uniform in the toroidal and poloidal directions and varies radially with a finite wavelength of mesoscale, which is analogous to zonal flows. A time-dependent bicoherence analysis reveals that the magnetic field should be generated by the background plasma turbulence. The discovery is classified as a new kind of phenomenon of structured magnetic field generation, giving insight into phenomena such as dipole field generation in rotational planets.  相似文献   

8.
The movement of a magnetized particle in the equatorial plane of a magnetic dipole is investigated. Analysis and classification of trajectory types for such particles are made. It is shown that eight different trajectory types are possible, which depend on the particle’s energy and on the orientation of its magnetic dipole moment. This permits the use of an axial magnetic field to move a magnetized particle in any point of the magnetic equatorial plane.  相似文献   

9.
In experiments on complex plasmas, afixed strata region in which the levitation of dust structures is observed is investigated using the method of probing by calibrated dust particles of different sizes in an applied magnetic field under elevated pressures. The measured azimuthal velocity of the probing particles corresponds to the action of the ion drag force for 4 μm-size particles and to the entrainment by the rotating gas owing to the electron vortex flow inside the strata for 1 μm-size particles. Extrapolation to pressures and magnetic fields in which the rotation inversion of dust structures is observed in experiments shows that the ion drag is the dominating force causing rotation with a negative projection of the angular velocity onto the magnetic induction.  相似文献   

10.
Calculating the dynamical dielectric response function for a two-dimensional electron gas (2D EG) under a perpendicular magnetic field and subjected to an additional weak unidirectional periodic magnetic field within the random-phase approximation (RPA), we find that not only is the response function broadened in the presence of the magnetic modulation, but it is also found to contain a series of subsingularities at the band edges which are attributed to the magnetic modulation induced broadening of the energy spectrum.  相似文献   

11.
Results are presented for the performance of a magnetoelastic torque transducer that converts a torque-induced strain in a non-magnetic shaft into changes in a measurable magnetic field. The magnetic field is generated by a thin magnetostrictive layer that is coated onto the circumference of the shaft. The layer is magnetized and has an initial residual strain. The magnetization within the layer rotates in response to changes in the strain which occur when the shaft is torqued. The magnetic field produced by the layer changes with the magnetization and this can be sensed by a magnetometer to monitor the torque on the shaft. In this paper, a phenomenological theory is developed for predicting the performance of the transducer. The theory can be used to predict the magnetic field distribution of the transducer as a function of the physical properties of the magnetic coating, its residual strain, and the applied torque. It enables rapid parametric analysis of transducer performance, which is useful for the development and optimization of novel non-contact torque sensors.  相似文献   

12.
An analytic solution is given for classical magnetohydrodynamic (MHD) problem of almost rigid-body rotation of a viscous, conducting spherical layer of liquid in an axisymmetric potential magnetic field. Large-scale flows bounded by rigid spheres are described for the first time in a new approximation. Two problems are solved: (1) in which both spheres are insulators and (2) in which the outer sphere is an insulator and the inner sphere a conductor. Axially symmetric flows and azimuthal magnetic fields are maintained by a slightly faster rotation of the inner sphere. The primary regeneration takes place in the boundary and shear MHD layers. The shear layers, described here for the first time, smooth out the large gradients at the boundaries of the MHD structures encompassed by them. There is essentially no azimuthal magnetic field inside these original structures, which are bounded by potential contours tangent to the spheres. An applied constant magnetic field creates a rigid MHD structure outside an axial cylinder tangent to the inner sphere. Inside the cylinder the rotation is faster and the meridional flux depends on height. A magnetic dipole forms a structure tangent to the outer equator. Outside the structure, the rotation is also rigid-body when both spheres are insulators. When a conducting sphere is present, the liquid rotates differentially everywhere, while near the axis and inside the MHD structure, it rotates even faster than the inner sphere. The last example of a general solution is a quadrupole magnetic field. In this case, two equatorially symmetric MHD structures are formed which rotate together with the inner sphere. Outside the structures, as in the most general case, the rotation is differential, the azimuthal magnetic field falls off as the first power of the applied field, and the meridional flux falls off as the square of the field in the first problem, and as the cube in the second. Zh. éksp. Teor. Fiz. 112, 2056–2078 (December 1997)  相似文献   

13.
The object of the present paper is to investigate the radial motion of a solid spherical body, assumed to be homogeneous, isotropic and elastic, in presence of a magnetic field in the azimuthal direction. The body is assumed to be in a state of initial stress which is hydrostatic in nature. This theory of radial motion of a solid spherical body in a magnetic field has been utilised to find the small radial motion of a solid Earth assumed to be homogeneous isotropic elastic sphere in presence of a magnetic field in the azimuthal direction. Considering the effect of gravity and the initial stress produced by slow process of creep due to extra masses over the surface of the Earth, the fundamental equations of motion are derived which are non-linear in character and are solved. The times of a desired radial displacement are calculated in presence of a magnetic field only and in presence of the same magnetic field, initial stress and gravitational field, which are compared and exhibited numerically.  相似文献   

14.
The application of a neutron microbeam to the investigation of an internal magnetic microstructure has been demonstrated experimentally. The object of investigation is an amorphous magnetic wire 190 μm in diameter, with the axial and circular magnetic domains formed inside it. A narrow neutron microbeam with a width of 2.6 μm, which is formed by a three-layer film (a planar waveguide) serves as the probe for scanning with a high spatial resolution. The method of investigation is the neutron spin precession upon transmission through the sample.  相似文献   

15.
An analytical model is developed for the high-current form of a low-pressure glow discharge in a magnetic field. Expressions are derived for the critical magnetic induction and critical pressure, below which it becomes impossible for this form of discharge to exist. It is shown that the transition from the high-voltage form to the high-current form of discharge with increasing pressure is not attributable to an increase in the ionization rate, but to an increase in the drift velocity of plasma electrons across the magnetic field. Estimates based on the expressions derived in the article agree in order of magnitude with the experimental data. It is shown that the region in which discharge exists can change considerably in the presence of electron emission. Zh. Tekh. Fiz. 68, 56–63 (July 1998)  相似文献   

16.
In paper the results of numerical modeling of a magnetic resonance in dilute magnetics near to a threshold of a percolation are discussed. The classical equation of motion of magnetic moments is used in view of an exchange interaction such as RKKI and imitation of spin-phonon interaction by Monte-Carlo method. It is shown, that cluster structure of a magnetic and threshold of percolation are determined by critical distance, on which there is a change of a sign of an exchange interaction. In an examination of percolation phase transition the jump change of breadth of a line of a magnetic resonance is set, that can form the basis for experimental definition of a threshold percolation and parameters of an exchange interaction by methods of a radiospectroscopy.  相似文献   

17.
A magnetic-field-induced orientational structure in a ferronematic (FN) liquid crystal (LC) layer is studied within the continuum theory. The rotation angles of the director and the magnetization and the concentration of magnetic impurity corresponding to a supertwisted orientational structure of the suspension are calculated. It is shown that the deviation angle of the director from the direction of the external field has the hysteresis region in which the orientational structure of the FN changes stepwise from a state with a positive twist of the director to a state with a negative twist. A value of the magnetic field strength is found above which orientational bistability regions arise. It is shown that orientational instability under the rotation of the field most clearly manifests itself in FNs with strong anchoring of particles to the LC matrix. It is established that the effect of magnetic segregation responsible for the redistribution of magnetic particles in the layer leads to the expansion of the hysteresis region and to a decrease in the field at which orientational instability arises. It is shown that, in FNs with soft anchoring between magnetic and LC subsystems, there exist several response modes to a quasistatic rotation of the magnetic field.  相似文献   

18.
An axisymmetric magnetic field is applied to a spherical, turbulent flow of liquid sodium. An induced magnetic dipole moment is measured which cannot be generated by the interaction of the axisymmetric mean flow with the applied field, indicating the presence of a turbulent electromotive force. It is shown that the induced dipole moment should vanish for any axisymmetric laminar flow. Also observed is the production of toroidal magnetic field from applied poloidal magnetic field (the omega effect). Its potential role in the production of the induced dipole is discussed.  相似文献   

19.
The dynamic response of a system being near the stable equilibrium boundary to an external magnetic field pulse is studied for 2D lattices of magnetic nanoparticles with cubic crystallographic anisotropy. The conditions under which magnetic moment oscillations from individual dipoles propagate to the entire system are revealed. This effect results in the lattice response are significantly larger in the external pulse duration and with an amplitude rather weakly depending on initial conditions and external field parameters, the processes during which the pulse results in reorientation of only individual lattice dipoles.  相似文献   

20.
We study systematically the entanglement of a two-qubit Heisenberg XY model in thermal equilibrium in the presence of an external arbitrarily-directed static magnetic field, thereby generalizing our prior work [G. Lagmago Kamta, A.F. Starace, Phys. Rev. Lett. 88, 107901 (2002)]. We show that a magnetic field having a component in the xy-plane containing the spin-spin interaction components produces different entanglement for ferromagnetic (FM) and antiferromagnetic (AFM) couplings. In particular, quantum phase transitions induced by the magnetic field-driven level crossings always occur for the AFM-coupled qubits, but only occur in FM-coupled qubits when the coupling is of Ising type or when the magnetic field has a component perpendicular to the xy-plane. When the magnetic field has a component in the xy-plane, the cut-off temperature above which the entanglement of both the FM- and AFM-coupled qubits vanishes can always be controlled using the magnetic field for any value of the XY coupling anisotropy parameter. Thus, by adjusting the magnetic field, an entangled state of two spins can be produced at any finite temperature. Finally, we find that a higher level of entanglement is achieved when the in-plane component of the magnetic field is parallel to the direction in which the XY exchange coupling is smaller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号