首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using a high resolution laser photoelectron attachment method, we have studied the formation of (H 2 O) q - (q = 2, 6, 7, 11, 15) cluster ions in collisions of slow free electrons (E = 1-80 meV) and Rydberg electrons (n = 12-300) with water clusters. Resonances at zero energy have been observed, the shapes of which are strongly dependent on cluster size. The results are discussed in terms of the formation of metastable negative ions. Received 8 March 1999  相似文献   

2.
We have observed electronically excited states in alkali-halide cluster anions with one excess electron. Using photoelectron spectroscopy, we have found two narrow states in (KI)-2, (NaI)-2, and (NaCl)-2, consistent with a dipole-bound electron, while larger cluster anions exhibit a single broad excited state. In the larger systems, electronic excitation is often accompanied by vibrational excitation and thus a change in cluster temperature. Such temperature changes affect cluster structure and in some cases lead to rapid thermal isomerization.  相似文献   

3.
Using photoelectron imaging, we show the effects of excess negative charges on the directions of outgoing electrons in multiply charged anions. Photoemissions are observed to occur either in a perpendicular or parallel direction, depending on the molecular configurations and origins of the detached electrons. Detachment of the π electrons from biphenyl-disulfonate dianions is shown to occur in a perpendicular direction due to the Coulomb repulsion from the two terminal charges, whereas detachment from the sulfonate groups in linear aliphatic disulfonates occurs in parallel directions.  相似文献   

4.
采用基于密度泛函理论的第一性原理研究方法,应用Vienna Ab-initio Simulation Package (VASP),计算了氧空位对Ag原子在MgO(001)面吸附的影响.通过成键过程中电荷密度的变化以及电荷转移的讨论,从原子尺度上分析了MgO(001)面空位点Fs和Fs+对其吸附、聚集与成核属性的影响以及吸附的能量属性.结果表明,相对清洁的MgO表面而言,Ag原子吸附在O空位时,能够更牢固地与MgO表面结合,并吸引更多的Ag原子聚集在一起,形成一个个独立的Ag原子岛.  相似文献   

5.
Helium nanodroplet isolation has been applied to agglomerate alkali clusters at temperatures of 380 mK. The very weak binding to the surface of the droplets allows a selection of only weakly bound, high-spin states. Here we show that larger clusters of alkali atoms in high-spin states can be formed. The lack of strong bonds from pairing electrons makes these systems nonmetallic, van der Waals-like complexes of metal atoms. We find that sodium and potassium readily form such clusters containing up to 25 atoms. In contrast, this process is suppressed for rubidium and cesium. Apparently, for these heavy alkalis, larger high-spin aggregates are not stable and depolarize spontaneously upon cluster formation.  相似文献   

6.
We have performed time-resolved studies of the dynamics of thermal isomerization occurring in certain cesium-halide cluster anions. Using a pump-probe technique, we have observed the repopulation of a photodepleted isomer within an ensemble as a function of time by monitoring the photoelectron spectrum. The rates of isomerization increase and the isomer lifetimes decrease as functions of temperature. The clusters undergo a gradual phase transition from solid-like to liquid-like states with liquid-like behavior obtained at approximately 500 K, much lower than the bulk melting temperatures of approximately 900 K.  相似文献   

7.
The properties of multiply charged anions are dominated by intramolecular Coulomb repulsion (ICR). Using photoelectron imaging, we show the effect of ICR on photoelectron angular distributions for a series of dianions, -O2C(CH2)_{n}CO_{2};{-} (D_{n};{2-}). The observed photoemission band of D_{n};{2-} was due to a perpendicular transition from the charged end group. However, photoemission intensities were observed to peak along the laser polarization for smaller n due to the strong ICR that forces electrons to be emitted along the molecular axis. This emission pattern weakens with increasing n and at D112- the angular distribution reverses back to peak at the perpendicular direction due to the reduced ICR.  相似文献   

8.
We have considered the interaction of O2 and N2 molecules with electrons trapped at the surface of MgO by performing embedded cluster DFT calculations. Trapped electrons at the surface of MgO react instantaneously with O2 and N2 leading to the formation of the corresponding O2 and N2 molecular anions stabilized at specific surface sites. So far, the atomistic model for this process was based on the idea that the electrons are trapped at oxygen vacancies, the FS+ centers. Recently, it has been shown that morphological sites at the MgO surface like a reverse corner, a step or a corner, can adsorb hydrogen and stabilize (H+)(e) pairs giving rise to a new class of paramagnetic color centers. Here we show that these centers exhibit reactivity towards O2 and N2, which is fully consistent with the experimental observations, providing further support to the new model of electron traps at the MgO surface.  相似文献   

9.
We have studied the dynamics of photoexcited tungsten cluster anions Wn-\mathrm{W}_{n}^{-} (n=3,4,…,14) by means of time-resolved two-photon photodetachment spectroscopy. At an excitation energy of h ν pump=1.56 eV the photoinduced dynamics is mainly dominated by fast electronic relaxation processes. For the smallest clusters, i.e., W3-\mathrm{W}_{3}^{-}, W4-\mathrm{W}_{4}^{-}, and W5-\mathrm{W}_{5}^{-}, individual relaxation channels have been identified and resolved on a timescale well below 100 fs. The time constants for the decay of nascent and secondary electrons have been deduced from a Bloch model. Complete thermalization takes place for all clusters on a timescale of ∼1 ps.  相似文献   

10.
We consider the new mechanism of X-ray generation by clusters under irradiation by femtosecond laser pulses, the so-called collective photorecombination. We develop the theory of the photo-recombination of electrons that pass from atomic clusters at the outer ionization to the ground level of a homogeneously charged cluster. Such a cluster is considered to be a quantum potential well. The dipole approximation is inapplicable for this process. We conclude that X-ray photons in collective photorecombination on a charged cluster as a whole have an energy that is much larger than that for photorecombination on separate atomic ions inside the cluster. For a typical cluster of 2.25 × 106 electrons, with a radius R = 300 Å, and a number density of plasma electrons n e = 2 × 1022 cm?3, we find that at a 5% outer ionization of this cluster, the energy of hard X-ray photons is 7.2 keV.  相似文献   

11.
Below laser fluences where a plasma is formed (the so-called plasma or plume formation threshold) a number of fundamental phenomena can occur where particles such as atomic and molecular ions, atoms and molecular neutrals, and electrons can be emitted. An understanding of such processes is necessary to develop predictive models for material removal from laser irradiated surfaces—at the foundation of laser etching, machining, and pulsed laser deposition. We have reported on a number of the mechanisms for such emission processes. Here, due to space limitations, we present a summary of our studies on the formation of negative alkali ions from single crystal KCl during exposure to pulsed 248-nm radiation at fluences well below the threshold for plasma formation. Despite the high electron affinities of the corresponding halogen atoms, negative halogen ions were not detected. Significantly, the positive and negative alkali ion distributions overlap strongly in time and space, consistent with K formation by the sequential attachment of two electrons to K+. Negative alkali ions are also observed under comparable conditions from LiF, NaCl, and KBr. In each material, the strong overlap between the positive and negative alkali ion distributions, and the lack of detected negative halogen ions, suggest that negative ion formation involves a similar mechanism.  相似文献   

12.
采用密度泛函理论(DFT)方法研究平面星形Li_6Si_6团簇的结构及其储氢性能.结果表明,氢分子能在平面星形Li_6Si_6团簇表面发生吸附,每个Li原子周围均可有效吸附三个氢分子,结构的稳定性及合适的吸氢条件表明平面星形Li_6Si_6团簇在常温常压条件下可以作为储氢媒介.  相似文献   

13.
Summary We evaluate and extend an earlier proposal for a microscopic theory of the non-metal-to-metal (NM-M) transition which occurs on dissolving an alkali metal in it molten halide. The transition is viewed as involving a balance between the free-energy gain from the binding of valence electrons into localization centres and the excess free energy of the ionic assembly screened by the electrons. Using parameters estimated for solutions of potassium in potassium chloride and assuming that the elementary process of electronic trapping is the formation ofF-centre-like clusters, Thomas-Fermi screening by metallic electrons is shown to lead to a very sharp NM-M transition at a concentration in the range of 25–30% added metal. Thermally activated hopping of the localized electrons and the evolution of the localization centres with composition are next crudely taken into account by allowing for an additional contribution to the inverse screening length, which is estimated from the electronic localization length. This is shown to lead to a progressive break-up of the localization clusters, accelerating into a NM-M transition in the same concentration range. This simplified theoretical scenario is consistent with the available experimental evidence.  相似文献   

14.
Titanium clusters are produced by laser vaporization of a metal wire in a helium gas pulse, stored in a Penning trap, size selected and transformed into multiply charged anions by electron attachment. Both doubly and triply charged titanium clusters are observed. For the first observation of photodetachment of electrons from metal cluster dianions, Ti 55 2- clusters are selected and excited by a laser pulse, which leads to the emission of an excess electron: Ti 55 2- → e + Ti 55 - . This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Singly charged silver-cluster anions are produced in a laser vaporization source and transferred into a Penning trap. After size selection the clusters are subjected to an electron bath in the trap, which results in the attachment of further electrons. The relative abundance of dianions or trianions as a function of the clusters' size is analyzed by time-of-flight mass spectrometry. Silver-cluster dianions are observed for sizes n≥ 24 and trianions for n > 100. In addition, a detailed study of the cluster sizes 24 ?n? 60 shows a pronounced resistance to electron attachment for singly charged anions Agn - with a closed electronic shell, in particular Ag29 -, Ag33 -, and Ag39 -. Both the threshold size for the observation of dianionic silver clusters and the shell effects in the production yield correlate favorably with previous theoretical investigations of the respective electron affinities. Received 24 November 2000  相似文献   

16.
Using semiclassical WKB-methods, we calculate the rate of electron–positron pair-production from the vacuum in the presence of two external fields, a strong (space- or time-dependent) classical field and a monochromatic electromagnetic wave. We discuss the possible medium effects on the rate in the presence of thermal electrons, bosons, and neutral plasma of electrons and protons at a given temperature and chemical potential. Using our rate formula, we calculate the rate enhancement due to a laser beam, and discuss the possibility that a significant enhancement may appear in a plasma of electrons and protons with self-focusing properties.  相似文献   

17.
By application of the perturbed -ray distribution method following heavy-ion reactions and recoil implantation techniques, we have found an experimental way of producing and investigating magnetic 4d states in metals. Strong 4d magnetism has been found for 4d ions in alkali metal hosts and in Pd hosts. In alkali metals, 4d ions reflect the phenomena of well-defined ionic ground states, orbital magnetism, mixed valence, and crystal field splittings smaller than theLS coupling. Magnetic 4d states in alkali metals cannot be described by one-electron approaches based on Anderson-type models, but requires an analysis in terms of many electron ionic configurations exhibiting basic features common to the physics of stable and unstable f stales in metals. In contrast, the local moment formation of 4d and 3d ions in Pd is governed by inter-atomic interactions of the magnetic d states with host d-band electrons, giving rise to spin magnetic behavior of the 4d impurity and to strong spin polarizations of the 4d electrons of the Pd host. Thus, the magnetism and electronic structure of 4d ions in metals exhibit qualitative differences in alkali metal hosts compared to Pd. The existence of magnetic 4d systems strongly depends on the 4d ion species and the host matrix, and on spin fluctuation rates or the corresponding Kondo temperatures. The results can be directly compared to theoretical work and also to the magnetic behavior of 3d ions in sp metal hosts and in hosts with d-band electrons.  相似文献   

18.
We analyze the properties and the character of the evolution of an electron subsystem of a large cluster (with a number of atoms n~104?106) interacting with a short laser pulse of high intensity (1017?1019 W/cm2). As a result of ionization in a strong laser field, cluster atoms are converted into multicharged ions, part of the electrons being formed leaves the cluster, and the other electrons move in a self-consistent field of the charged cluster and the laser wave. It is shown that electron-electron collisions are inessential both during the cluster irradiation by the laser pulse and in the course of cluster expansion; the electron distribution in the cluster therefore does not transform into the Maxwell distribution even during cluster expansion. During cluster expansion, the Coulomb field of a cluster charge acts on cluster ions more strongly than the pressure resulting from electron-ion collisions. In addition, bound electrons remain inside the cluster in the course of its expansion, and cluster expansion therefore does not lead to additional cluster ionization.  相似文献   

19.
Using a high resolution ( meV) laser photoelectron attachment method, we have studied the formation of (CO 2) q ions (q = 4−22) in collisions of low energy electrons (1−180 meV) with (CO2) N () clusters. The previously reported “zero energy resonance”, observed at much larger electron bandwidths, actually consists of several narrow vibrational Feshbach resonances of the type [(CO 2) N −1CO which involve a vibrationally-excited molecular constituent ( denotes vibrational mode) and a diffuse electron weakly bound to the cluster by long range forces. The resonances occur at energies below those of the vibrational excitation energies of the neutral clusters [(CO 2) N −1CO ]; the redshift rises with increasing cluster ion size q by about 12 meV per unit; these findings are recovered by a simple model calculation for the size dependent binding energies. The size distribution in the cluster anion mass spectrum, resulting from attachment of very slow electrons, mainly reflects the amount of overlap of solvation-shifted vibrational resonances with zero energy; the cluster anion size q is identical with or close to that of the attaching neutral cluster. Received 11 January 2000 and Received in final form 10 April 2000  相似文献   

20.
张川晖  崔航  申江 《中国物理 B》2012,21(10):103102-103102
The structure and the magnetic moment of transition metal encapsulated in a Au 12 cage cluster have been studied by using the density functional theory.The results show that all of the transition metal atoms(TMA) can embed into the Au 12 cage and increase the stability of the clusters except Mn.Half of them have the I h or O h symmetry.The curves of binding energy have oscillation characteristics when the extra-nuclear electrons increase;the reason for this may be the interaction between parity changes of extra-nuclear electrons and Au atoms.The curves of highest occupied molecular orbital-lowest unoccupied molecular orbital(HOMO-LUMO) gap also have oscillation characteristics when the extra-nuclear electrons increase.The binding energies of many M@Au 12 clusters are much larger than that of the pure Au 13 cluster,while the gaps of some of them are less than that of Au 13,so maybe Cr@Au 12,Nb@Au 12,and W@Au 12 clusters are most stable in fact.For magnetic calculations,some clusters are quenched totally,but the Au 13 cluster has the largest magnetic moment of 5 μ B.When the number of extra-nuclear electrons of the encapsulated TMA is even,the magnetic moment of relevant M@Au 12 cluster is even,and so are the odd ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号