首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Within the context of traditional logarithmic grand unification atM GUT ≈ 1016 GeV, we show that it is nevertheless possible to observe certain GUT states such asX andY gauge bosons at lower scales, perhaps even in the TeV range. We refer to such states as ‘GUT precursors’. Such states offer an interesting alternative possibility for new physics at the TeV scale, even when the scale of gauge coupling unification remains high, and suggest that it may be possible to probe GUT physics directly even within the context of high-scale gauge coupling unification. More generally, our results also suggest that it is possible to construct self-consistent ‘hybrid’ models containing widely separated energy scales, and give rise to a Kaluza-Klein realization of non-trivial fixed points in higher-dimensional gauge theories.  相似文献   

2.
We show that in the framework of grand unified theory (GUT) with anomalous U(1)(A) gauge symmetry, the success of the gauge coupling unification in the minimal SU(5) GUT is naturally explained, even if the mass spectrum of superheavy fields does not respect SU(5) symmetry. Because the unification scale for most realizations of the theory becomes smaller than the usual GUT scale, it suggests that the present level of experiments is close to that sufficient to observe proton decay via dimension 6 operators, p-->e+pi.  相似文献   

3.
We present a grand unified theory (GUT) that has GUT fields with masses of the order of a TeV, but at the same time preserves (at the one-loop level) the success of gauge-coupling unification of the minimal supersymmetric standard model (MSSM) and the smallness of proton decay operators. This scenario is based on a five-dimensional theory with the extra dimension compactified as in the Randall-Sundrum model. The MSSM gauge sector and its GUT extension live in the 5D bulk, while the matter sector is localized on a 4D boundary.the is a test again  相似文献   

4.
We propose a new seesaw mechanism for neutrino masses within a class of supersymmetric SO(10) models with broken D parity. It is shown that in such scenarios the B-L scale can be as low as TeV without generating inconsistencies with gauge coupling unification nor with the required magnitude of the light neutrino masses. This leads to a possibly light new neutral gauge boson as well as relatively light quasi-Dirac heavy leptons. These particles could be at the TeV scale and mediate lepton flavor and CP violating processes at appreciable levels.  相似文献   

5.
《Nuclear Physics B》1999,537(1-3):47-108
One of the drawbacks of conventional grand unification scenarios has been that the unification scale is too high to permit direct exploration. In this paper, we show that the unification scale can be significantly lowered (perhaps even to the TeV scale) through the appearance of extra space-time dimensions. Such extra dimensions are a natural consequence of string theories with large-radius compactifications. We show that extra space-time dimensions naturally lead to gauge coupling unification at intermediate mass scales, and moreover may provide a natural mechanism for explaining the fermion mass hierarchy by permitting the fermion masses to evolve with a power-law dependence on the mass scale. We also show that proton-decay constraints may be satisfied in our scenario due to the higher-dimensional cancellation of proton-decay amplitudes to all orders in perturbation theory. Finally, we extend these results by considering theories without supersymmetry; experimental collider signatures; and embeddings into string theory. The latter also enables us to develop several novel methods of explaining the fermion mass hierarchy via D-branes. Our results therefore suggest a new approach towards understanding the physics of grand unification as well as the phenomenology of large-radius string compactifications.  相似文献   

6.
RAM LAL AWASTHI 《Pramana》2016,86(2):223-229
The grand unification theories based on SO(10) gauge group have been at the centre of attraction to beyond Standard Model phenomenology. The SO(10) gauge symmetry may pass through several intermediate symmetries before breaking to Standard Model. Therefore some higher symmetries may occur at the experimentally reachable scales. This feature flourishes easily in non-supersymmetric models compared to supersymmetric ones. We find that certain breaking chains give tremendous predictions for the physics being explored at various particle physics experiments. Explanation to neutrino masses through TeV scale inverse see-saw is the driving theme of the models studied.  相似文献   

7.
Utpal Sarkar 《Pramana》1993,41(1):261-269
Recent developments on grand unified theories (GUTs) in the context of the LEP measurements of the coupling constants will be reviewed. The three coupling constants at the electroweak scale have been measured at LEP quite precisely. One can allow these couplings to evolve with energy following the renormalization group equations for the various groups and find out whether all the coupling constants meet at any energy. It was pointed out that the minimalSU (5) grand unified theory fails to satisfy this test. However, various extensions of the theory are still allowed. These extensions include (i) supersymmetricSU (5) GUT, with some arbitrariness in the susy breaking scale arising from the threshold corrections, (ii) non-susySU (5) GUTs with additional fermions as well as Higgs multiplets, which has masses of the order of TeV, and (iii) non-renormalizable effect of gravity with a fine tuned relation among the coupling constants at the unification energy. The LEP results also constrain GUTs with an intermediate symmetry breaking scale. By adjusting the intermediate symmetry breaking scale, one usually can have unification, but these theories get constrained. For example, the left-right symmetric theories coming from GUTs can be broken only at energies higher than about ~ 1010 GeV. This implies that if right handed gauge bosons are found at energies lower than this scale, then that will rule out the possibility of grand unification. Another recent interesting development on the subject, namely, low energy unification, will be discussed in this context. All the coupling constants are unified at energies of the order of ~ 108 GeV when they are embedded in anSU (15) GUT, with some particular symmetry breaking pattern. But even in this case the results of the intermediate symmetry breaking scale remain unchanged.  相似文献   

8.
We introduce a new string-inspired approach to the subject of grand unification which allows the GUT scale to be small, ≲200 TeV, so that it is within the reach of conceivable laboratory accelerated colliding beam devices. The key ingredient is a novel use of the heterotic string symmetry group physics ideas to render baryon number violating effects small enough to have escaped detection to date. This part of the approach involves new unknown parameters to be tested experimentally. A possible hint at the existence of these new parameters may already exist in the EW precision data comparisons with the SM expectations.  相似文献   

9.
We construct asymptotically free gauge theories exhibiting dynamical breaking of the left-right gauge group G(LR)=SU(3)(c) x SU(2)(L) x SU(2)(R) x U(1)(B-L), and its extension to the Pati-Salam gauge group G(422)=SU(4)(PS) x SU(2)(L) x SU(2)(R). The models incorporate technicolor for electroweak breaking, and extended technicolor for the breaking of G(LR) and G422 and the generation of fermion masses. They include a seesaw mechanism for neutrino masses, without a grand unified theory (GUT) scale. These models explain why G(LR) and G422 break to SU(3)(c) x SU(2)(L) x U(1)(Y), and why this takes place at a scale (approximately 10(3) TeV) large compared to the electroweak scale, but much smaller than a GUT scale.  相似文献   

10.
We supersymmetrize the very attractive flavour unification modelSU (11). As with other supersymmetric GUTs the gauge hierarchy problem is simplified, but we may also have observable (τ p ≈1033 yrs) proton decay. The required split multiplets are obtained by making the adjoint take a particular direction. Supersymmetry is broken softly at the TeV scale. There is a uniqueU(1) A symmetry, and hence there are no true Nambu-Goldstone bosons. TheU(1) A is broken at the GUT scale and there result an invisible axion and neutrino masses.  相似文献   

11.
We discuss the possibility of unification of gauge coupling constants of the standard model and its extensions at some high scale without the assuption of the existence of a covering GUT at that scale. In our analysis we examine (i) the standard model, (ii) its supersymmetric extension and (iii) an extension in which the spontaneous symmetry breaking is based on the condensation of high-colour fermions. The latter case is favoured for perturbative coupling constants unification while the supersymmetric extension of the standard model, with five families, is favoured for non-perturbative unification.  相似文献   

12.
We discuss whether the (MSSM) unification of gauge couplings can be accommodated in string theories with a low (TeV) string scale. This requires either power law running of the couplings or logarithmic running extremely far above the string scale. In both cases it is difficult to arrange for the multiplet structure to give the MSSM result. For the case of power law running there is also enhanced sensitivity to the spectrum at the unification scale. For the case of logarithmic running there is a fine tuning problem associated with the light closed string Kaluza Klein spectrum which requires gauge mediated supersymmetry breaking on the “visible” brane with a dangerously low scale of supersymmetry breaking. Evading these problems in low string scale models requires a departure from the MSSM structure, which would imply that the success of gauge unification in the MSSM is just an accident.  相似文献   

13.
This note summarizes many detailed physics studies done by the ATLAS and CMS Collaborations for the LHC, concentrating on processes involving the production of high mass states. These studies show that the LHC should be able to elucidate the mechanism of electroweak symmetry breaking and to study a variety of other topics related to physics at the TeV scale. In particular, a Higgs boson with couplings given by the Standard Model is observable in several channels over the full range of allowed masses. Its mass and some of its couplings will be determined. If supersymmetry is relevant to electroweak interactions, it will be discovered and the properties of many supersymmetric particles elucidated. Other new physics, such as the existence of massive gauge bosons and extra dimensions can be searched for extending existing limits by an order of magnitude or more.  相似文献   

14.
We consider field sets that do not form complete SU(5) multiplets, but exactly preserve the one-loop MSSM prediction for α3(MZ)α3(MZ) independently of the value of their mass. Such fields can raise the unification scale in different ways, through a delayed convergence of the gauge couplings, a fake unified running below the GUT scale, or a postponed unification after a hoax crossing at a lower scale. The α3(MZ)α3(MZ) prediction is independent of the mass of the new fields, while the GUT scale often is not, which allows to vary the GUT scale. Such “magic” fields represent a useful tool in GUT model building. For example, they can be used to fix gauge coupling unification in certain two step breakings of the unified group, to suppress large KK thresholds in models with extra dimensions, or they can be interpreted as messengers of supersymmetry breaking in GMSB models.  相似文献   

15.
We study an extension of the MSSM with a fourth generation of chiral matter. With this extension no value of tanβtanβ allows the theory to stay perturbative up to the GUT scale. We suggest one model with extra vector-like states at the TeV scale that allows perturbativity all the way up to the GUT scale.  相似文献   

16.
We explore the gauge coupling relations and the unification scale in F-theory SU(5) GUT broken down to the Standard Model by an internal U(1) Y gauge flux. We consider variants with exotic matter representations which may appear in these constructions and investigate their rôle in the effective field theory model. We make a detailed investigation on the conditions imposed on the extraneous matter to raise the unification scale and make the color triplets heavy in order to avoid fast proton decay. We also discuss in brief the implications on the gaugino masses.  相似文献   

17.
The braneworlds models were inspired partly by Kaluza-Klein’s theory, where both the gravitational and the gauge fields are obtained from the geometry of a higher dimensional space. The positive aspects of these models consist in perspectives of modifications it could bring in to particle physics, such as: unification in a TeV scale, quantum gravity in this scale and deviation of Newton’s law for small distances. One of the principles of these models is to suppose that all space-times can be embedded in a bulk of higher dimension. The main result in these notes is a theorem showing a mathematical inconsistency of the Randall-Sundrum braneworld model, namely that the Schwarzschild space-time cannot be embedded locally and isometrically in a five dimensional bulk with constant curvature (for example AdS-5). From the point of view of semi-Riemannian geometry this last result represents a serious restriction to the Randall-Sundrum’s braneworld model.  相似文献   

18.
We show that perturbative high scale unification and a solution to the hierarchy problem are possible with extra dimensions in the context of the warped geometry of 5D anti-de Sitter space ( AdS(5)). This is possible because the couplings for bulk gauge bosons run logarithmically below the AdS(5) curvature scale. The calculation is done in five dimensions, rather than in the effective theory, which is strongly coupled above the TeV scale.  相似文献   

19.
Unified composite model in which the metacolor symmetry group and the standard model group are embedded in a single group of the SU(N) type and unified above a certain energy scale are constructed. Such unification scheme provides constraints to the composite model building. The proposed models are analysed in terms of the complementarity principle to show that they satisfy the physics Higgs phiwe criterion. In order to obtain a metacolor scale of the order of a few tens TeV, the rank of the unification group b restricted.  相似文献   

20.
New NLO calculations have become available using resummed radiative corrections. Using these calculations we perform a global fit of the supergravity inspired constrained minimal supersymmetric model. We find that the resummed calculations show similar constraints as the LO calculations, namely that only with a relatively heavy supersymmetric mass spectrum of (1 TeV) the b– Yukawa unification and the rate can coexist in the large scenario. The resummed calculations are found to reduce the renormalization scale uncertainty considerably. The low scenario is excluded by the present Higgs limits from LEP II. The constraint from the Higgs limit in the plane is severe, if the trilinear coupling at the GUT scale is fixed to zero, but is considerably reduced for . The relatively heavy SUSY spectrum required by corresponds to a Higgs mass of GeV in the CMSSM. Received: 14 February 2001 / Revised version: 22 March 2001 / Published online: 29 June 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号