首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Density functional theory calculations show that the reversible Sn/Ge(111) sqrt[3]xsqrt[3]<-->3x3 phase transition can be described in terms of a surface soft phonon. The isovalent Sn/Si(111) case does not display this transition since the sqrt[3]xsqrt[3] phase is the stable structure at low temperature, although it presents a partial softening of the 3x3 surface phonon. The rather flat energy surfaces for the atomic motion associated with this phonon mode in both cases explain the experimental similarities found at room temperature between these systems. The driving force underlying the sqrt[3]xsqrt[3]<-->3x3 phase transition is shown to be associated with the electronic energy gain due to the Sn dangling bond rehybridization.  相似文献   

2.
Angle-resolved photoemission has been utilized to study the surface electronic structure of 1 / 3 monolayer of Sn on Ge(111) in both the room-temperature (sqrt[3]xsqrt[3] )R30 degrees phase and the low-temperature ( 3x3) charge-density-wave phase. The results reveal a gap opening around the ( 3x3) Brillouin zone boundary, suggesting a Peierls-like transition despite the well-documented lack of Fermi nesting. A highly sensitive electronic response to doping by intrinsic surface defects is the cause for this unusual behavior, and a detailed calculation illustrates the origin of the ( 3x3) symmetry.  相似文献   

3.
The phonon dynamics of the Sn/Ge(111) interface is studied using high-resolution helium atom scattering and first-principles calculations. At room temperature we observe a phonon softening at the Kmacr; point in the (sqrt[3]xsqrt[3])R30 degrees phase, associated with the stabilization of a (3x3) phase at low temperature. That phonon band is split into three branches in the (3x3) phase. We analyze the character of these phonons and find out that the low- and room-temperature modes are connected via a chaotic motion of the Sn atoms. The system is shown to present an order-disorder transition.  相似文献   

4.
The well-known low-temperature phase transition sqrt[3]xsqrt[3] to 3x3 for the 1/3 monolayer of Sn adatoms on the Ge(111) surface has been studied by scanning tunneling microscopy. The STM tip was used as a probe to record the tunneling current as a function of time on top of the Sn adatoms. The presence of steps on the current-time curves allowed the detection of fluctuating Sn atoms along the direction vertical to the substrate. We discuss the effect of temperature and surface defects on the frequency of the motion, finding consistency with the dynamical fluctuations model.  相似文献   

5.
A new structural phase transition has been observed at low temperature for the one-third of a monolayer (alpha phase) of Pb on Ge(111) using a variable-temperature scanning tunneling microscope. The well-known (sqrt[3] x sqrt[3])R30 degrees to (3 x 3) transition is accompanied by a new structural phase transition from (3 x 3) to a disordered phase at approximately 76 K. The formation of this "glasslike" phase is a consequence of competing interactions on different length scales.  相似文献   

6.
The Sn 4d line shapes of the Sn/Ge(111) sqrt[3]xsqrt[3] and 3x3 surfaces are currently under debate. By employing LEED, core-level, and valence band spectroscopy we have been able to determine the correct Sn 4d line shapes for these surfaces. Contrary to a recent study we conclude that the majority of the earlier reports present line shapes close to the correct ones. At 70 K we identify three 4d components in the 3x3 spectrum, two of which are identified with the two types of Sn atoms in the 3x3 cell. The third component is attributed to Sn atoms surrounding Ge substitutional defects.  相似文献   

7.
Distortions of the sqrt[3]x sqrt[3] Sn/Ge(111) and Sn/Si(111) surfaces are shown to reflect a disproportionation of an integer pseudocharge, Q, related to the surface band occupancy. A novel understanding of the (3 x 3)-1U ("1 up, 2 down") and 2U ("2 up, 1 down") distortions of Sn/Ge(111) is obtained by a theoretical study of the phase diagram under strain. Positive strain keeps the unstrained value Q=3 but removes distortions. Negative strain attracts pseudocharge from the valence band causing first a (3 x 3)-2U distortion (Q=4) on both Sn/Ge and Sn/Si, and eventually a (sqrt[3] x sqrt[3])-3U ("all up") state with Q=6. The possibility of a fluctuating phase in unstrained Sn/Si(111) is discussed.  相似文献   

8.
Self-organized islands of uniform heights can form at low temperatures on metal/semiconductor systems as a result of quantum size effects, i.e., the occupation of discrete electron energy levels in the film. We compare the growth mode on two different substrates [Si(111)- (7x7) vs Si(111)- Pb(sqrt[3]xsqrt[3] )] with spot profile analysis low-energy electron diffraction. For the same growth conditions (of coverage and temperature) 7-step islands are the most stable islands on the (7x7) phase, while 5-step (but larger islands) are the most stable islands on the (sqrt[3]xsqrt[3] ). A theoretical calculation suggests that the height selection on the two interfaces can be attributed to the amount of charge transfer at the interface.  相似文献   

9.
Low temperature (down to 2.5 K) scanning tunneling microscopy (STM) and spectroscopy (STS) measurements are presented to assess the nature of the alpha-Sn/Ge(111) surface. Bias-dependent STM and STS measurements have been used to demonstrate that such a surface preserves a metallic 3 x 3 reconstruction at very low temperature. A tip-surface interaction mechanism becomes active below about 20 K at the alpha-Sn/Ge(111) surface, resulting in an apparent unbuckled (sqrt[3] x sqrt[3]) reconstruction when filled states STM images are acquired with tunneling currents higher than 0.2 nA.  相似文献   

10.
Temperature-dependent electron transport in a metallic surface superstructure, Si(111)sqrt[3] x sqrt[3]-Ag, was studied by a micro-four-point probe method and photoemission spectroscopy. The surface-state conductivity exhibits a sharp transition from metallic conduction to strong localization at approximately 150 K. The metallic regime is due to electron-phonon interaction while the localization seemingly originates from coherency of electron waves. Random potential variations, caused by Friedel oscillations of surface electrons around defects, likely induce strong carrier localization.  相似文献   

11.
Atomic depth distribution and growth modes of Ga on an Si(111)-alpha-(sqrt[3]xsqrt[3])-Au surface at room temperature were studied after each monolayer deposition of Ga via reflection high-energy electron diffraction and characteristic x-ray spectroscopy measurements as functions of glancing angle theta(g) of the incident electron beam. One monolayer of Ga grew on the Au layer, and the sqrt[3]xsqrt[3] periodicity was conserved below the Ga overlayer. Above a critical Ga coverage of about one monolayer, this growth mode drastically changed; i.e., Au atoms dissociated from the sqrt[3]xsqrt[3] structure and Ga grew into islands of Ga-Au alloy.  相似文献   

12.
We report a high-resolution neutron diffraction study on the orbitally degenerate spin-1/2 hexagonal metallic antiferromagnet AgNiO2. A structural transition to a tripled unit cell with expanded and contracted NiO6 octahedra indicates sqrt[3]xsqrt[3] charge order on the Ni triangular lattice. This suggests charge order as a possible mechanism of lifting the orbital degeneracy in the presence of charge fluctuations, as an alternative to the more usual Jahn-Teller distortions. A novel magnetic ground state is observed at low temperatures with the electron-rich S=1 Ni sites arranged in alternating ferromagnetic rows on a triangular lattice, surrounded by a honeycomb network of nonmagnetic and metallic Ni ions. We also report first-principles band-structure calculations that explain microscopically the origin of these phenomena.  相似文献   

13.
A thermodynamic model is suggested for a (3×3)-type structure formation with a charge density wave (CDW) arising against the background of a \((\sqrt 3 \times \sqrt 3 )R30^\circ\)-type structure in a Group IV metal (Sn, Pb) submonolayer adsorbed with a coverage of ≈1/3 at the (Ge, Si) semiconductor (111) surface. Calculations are carried out by using a self-consistent theory for static fluctuations of the order parameter amplitude. It is shown that the low-symmetry (3×3) phase can nucleate at point defects of the submonolayer as charge-ordered areas of finite radius. The spatial configuration of the CDW and its temperature dependence are calculated. The results obtained are compared with the experimental data for the Sn/Ge(111) system.  相似文献   

14.
The electronic structure of Ag(111) quantum well films covered with a (sqrt[3]xsqrt[3]) R30 degrees Bi/Ag surface ordered alloy, which shows a Rashba spin-split surface state, is investigated with angle-resolved photoemission spectroscopy. The band dispersion of the spin-split surface state is significantly modified by the interaction with the quantum well states of Ag films. The interaction is well described by the band hybridization model, which concludes the spin polarization of the quantum well states.  相似文献   

15.
The stability of OH on Pt(111) has been investigated to determine the role of hydrogen bonding in stabilizing the overlayer. We find that the optimal structure is a mixed (OH+H2O) phase, confirming recent density-functional theory predictions. The reaction O+3H(2)O forms a hexagonal (sqrt[3]xsqrt[3])R30 degrees -(OH+H2O) lattice with a weak (3x3) superstructure, caused by ordering of the hydrogen bonds. The mixed overlayer can accommodate a range of H(2)O/OH compositions but becomes less stable as the H2O content is reduced, causing defects in the hydrogen-bonding network that lift the (3 x 3) superstructure and destabilize the overlayer.  相似文献   

16.
The line shape of the Auger decay of adatoms is studied by a joint theoretical and experimental effort, the former within a DFT framework, and the latter with synchrotron radiation measurements. We investigate the KL(2,3)V Auger deexcitation of Na on Al(111), a system with different adsorption geometries. In particular, we study the (sqrt[3]xsqrt[3])R30 degrees phase at 1/3 ML (monolayer) and the more complex (2 x 2) structure at 1/2 ML coverage. From the comparison between theory and experiment, we unambiguously determine features that allow for the determination of the adsorption environment from the adatom Auger spectrum.  相似文献   

17.
A single-site dynamical mean-field study of a three band model with the rotationally invariant interactions appropriate to the t_(2g) levels of a transition metal oxide reveals a quantum phase transition between a paramagnetic metallic phase and an incoherent metallic phase with frozen moments. The Mott transitions occurring at electron densities n=2, 3 per site take place inside the frozen moment phase. The critical line separating the two phases is characterized by a self-energy with the frequency dependence Sigma(omega) approximately sqrt[omega] and a broad quantum critical regime. The findings are discussed in the context of the power law observed in the optical conductivity of SrRuO3.  相似文献   

18.
We report an investigation on the properties of 0.33 ML of Sn on Ge(111) at temperatures down to 5 K. Low-energy electron diffraction and scanning tunneling microscopy show that the (3x3) phase formed at approximately 200 K, reverts to a new ((square root 3)x(square root 3))R30 degrees phase below 30 K. The vertical distortion characteristic of the (3x3) phase is lost across the phase transition, which is fully reversible. Angle-resolved photoemission experiments show that, concomitantly with the structural phase transition, a metal-insulator phase transition takes place. The ((square root 3)x(square root 3))R30 degrees ground state is interpreted as the formation of a Mott insulator for a narrow half-filled band in a two-dimensional triangular lattice.  相似文献   

19.
The spin texture of the metallic two-dimensional electron system (sqrt[3]×sqrt[3])-Au/Ge(111) is revealed by fully three-dimensional spin-resolved photoemission, as well as by density functional calculations. The large hexagonal Fermi surface, generated by the Au atoms, shows a significant splitting due to spin-orbit interactions. The planar components of the spin exhibit a helical character, accompanied by a strong out-of-plane spin component with alternating signs along the six Fermi surface sections. Moreover, in-plane spin rotations toward a radial direction are observed close to the hexagon corners. Such a threefold-symmetric spin pattern is not described by the conventional Rashba model. Instead, it reveals an interplay with Dresselhaus-like spin-orbit effects as a result of the crystalline anisotropies.  相似文献   

20.
Structure and reversible structural phase transitions on clean vicinal Si surfaces inclined from the (111) plane towards [2 ] and [ 11] poles and the effect of nickel on the structure and the structural transitions on these surfaces have been studied by LEED. The structures of clean surfaces inclined towards [2 ] and [ 11] are different. Phase transitions take place at about 870°C and 800° C, respectively. Above the transition temperatures these two surfaces consist of regular steps with heights equal to one interplanar distance d111 (3.135 Å). The terrace width between steps is determined by the angle of inclination to the (111) plane. Below the transition temperatures the surfaces inclined to [2 ] contain steps with height 3d111, those inclined towards the [ 11] pole consist of combinations of (111) facets and some other, apparently (133). The effect of nickel leads to the formation of regular steps with height 2d111 on the surfaces inclined towards [2 ] and with height 2d111 or 1d111, depending on the nickel concentration, on the inclined towards [ 11]. On nickel-containing surfaces there also take place reversible structural transitions with varying temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号