首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present measurements of the temperature dependence of the electrical resistivity, the thermopower and the specific heat of the hexagonal compound CeCu4Al. At high temperatures, the electrical resistivity is characterized by a nearly temperature independent behaviour, followed by a continuous increase below 100K. No maximum has been found down to 1.7 K. The thermopower shows a positive maximum at about 30 K. As in CeCu6 no negative values are observable in the range from 4.2 K up to a room temperature. The specific heat data between 7 and 15 K reveal a γ value around 280 mJ mol-1 K-2. Below this temperature range the specific heat cp/T shows a rapid rise and crosses the value of 1 J mol-1 K-2 at about 1.45 K.  相似文献   

2.
The electrical resistivity and the thermopower are measured on the single phase superconductor Ba2YCu3O9-δ (δ=2.1). The results indicate that the temperature dependences of the resistance and thermopower exhibit typical metallic behaviour, and the sample conducts via electrons at high temperatures. The behaviour of the thermopower can be described with Mott's semi-classical model. The specific heat of electrons in normal state has been estimated 780mJ/K·mole at 200K, i.e. γ=3.9mJ/K2·mole. Unusual phonon-drag effect is observed above the superconducting transition temperature Tc. Below Tc, the electrical resistivity and the thermopower all drop to zero corresponding to a superconducting ground state.  相似文献   

3.
测量了La2-xBaxCuO4系列单晶样品的电阻率和热电势,我们发现,当=0.125(x=1/8)时,La2-xBaxCuO4的截流子是所有样品中局域化最强的,但数据分析结果显示,它又是弱域化行为,文中我们讨论了Tc的被压制的原因,得出这可能与低温下LTO到LTT的结构相变,空穴与自旋的静态条纹有序有关,热电势结果观察不到任何声子曳引的痕迹,表明在LBCO体系中电声子的相互作用很弱。  相似文献   

4.
The temperature dependence of the electrical resistivity, the thermal conductivity and the thermopower of the cubic isostructural (GdxY1–x)Al2 series will be presented. The magnetic properties of this system are characterized by the existence of ferromagnetism for Gd concentrations x>0.3 while for low Gd contents cluster and spinglass behaviour is observed. The spin dependent scattering contribution to the transport phenomena has been obtained by comparing the experimental data of the magnetic compounds with those of the isostructural nonmagnetic YAl2. For the ferromagnetic concentration range and forT>T c (T c =Curie temperature) we revealed a temperature independent contribution to the electrical resistivity, a contribution with a temperature variation of 1/T to the thermal resistivity and a linear temperature dependence of this part to the thermopower. These results are in good agreement with the temperature dependence calculated by solving the linearized Boltzmann equation for this type of scattering processes.  相似文献   

5.
We present heat capacity measurements on crystalline Zn nanowires with diameters of 230 and 23 nm, bracketing the superconducting coherence length of 155 nm. Transport measurements on superconducting nanowires have found a crossover from three-dimensional to one-dimensional behavior as the wire diameter was reduced below the coherence length. In contrast, the normalized heat capacity peak of the 23 nm Zn nanowires is found to be nearly identical to that of 230 nm wires and bulk Zn, indicating their thermodynamic properties remain three dimensional.  相似文献   

6.
Temperature dependent weak localization is measured in metallic nanowires in a previously unexplored size regime down to width w = 5 nm. The dephasing time, tau(phi), shows a low temperature T dependence close to quasi-1D theoretical expectations (tau(phi) approximately T(-2/3)) in the narrowest wires, but exhibits a relative saturation as T-->0 for wide samples of the same material, as observed previously. As only sample geometry is varied to exhibit both suppression and divergence of tau(phi), this finding provides a new constraint on models of dephasing phenomena.  相似文献   

7.
The resistance of single-wall carbon nanotube (SWCN) ropes or mats, and some individual tubes, typically shows a crossover from non-metallic to metallic temperature dependence as temperature increases. This systematic pattern is consistent with a series heterogeneous model involving metallic resistance and tunnelling through barriers such as defects and inter-rope contacts. The metallic resistivity term increases linearly with temperature for the ropes or mats, but faster for the individual nanotubes. In contrast to the almost vanishing thermoelectric power expected from electronic band structure calculations, the measured values for mats or films (including recent measurements in a vacuum) are even larger than for typical metals. The thermopower increases with temperature as for metals, but has a characteristic non-linear shape. This temperature dependence can be modelled, for example, with parallel conduction in metallic and semiconducting tubes, but the size of the metallic thermopower required is anomalously large.  相似文献   

8.
From an analysis of available data it is shown that there is experimental evidence for a rather general correlation of electrical resistivity, ϱ, and thermopower with the quasielastic linewidth of the neutron spectra, ΓQE, for intermetallic Ce- and Yb-compounds with an unstable 4f-shell. At high temperatures, kBT > ΓQE, the 4f-contribution to the resistivity, Δϱ, scales with Γ−1QE. For Ce-compounds, which show a resistivity maximum, the measured strong temperature dependence of ΓQE corresponds to the temperature dependence of the resistivity above the resistivity maximum over a few hundred K. Empirical expressions for resistivity and thermopower are presented, which not only yield the observed correlation for kBT > ΓQE, but which also describe the low temperature decrease of the two quantities: Fits for the resistivities and the thermopowers of a large number of Ce- and Yb-compounds are is very good agreement with the data over a large range of temperatures. The correlation as well as the empirical expressions for resistivity and thermopower are discussed within a model of M. Weger, which has recently been proposed to account for the so called “resistivity saturation” observed in materials with narrow bands.  相似文献   

9.
Low-temperature resistance of DNA-templated nanowires   总被引:3,自引:0,他引:3  
We present low-temperature measurements of the electrical conductivity of metallic nanowires assembled on single DNA molecules by chemical deposition of a thin continuous palladium film. The investigated nanowires exhibit ohmic transport behaviour at room temperature. At low temperature we observe an increase of resistance with decreasing temperature that follows a logarithmic dependence. This behaviour can be described with quantum effects in a disordered metallic film. Received: 4 October 2001 / Accepted: 12 December 2001 / Published online: 20 March 2002  相似文献   

10.
Because of the increase in the electronic density of states in low-dimensional systems, semiconductor quantum wires constitute a most promising thermoelectric material. We report here the first experimental observation of a very large enhancement of the thermoelectric power of composites containing bismuth nanowires with diameters of 9 and 15 nm, embedded in porous alumina and porous silica. The temperature dependence of the electrical resistance shows that the samples are semiconductors with energy gaps between 0.17 and 0.4 eV, consistent with the theoretical predictions.  相似文献   

11.
金属纳米线是未来纳米电子器件中的重要组成部分,因此研究单根金属纳米线的电学性质具有重要的意义。相对于单根纳米线电学性质的移位测量,原位测量精确度更高,结果更可靠。目前,国际上用于原位电学性质测量的单根纳米线的最小直径为80 nm,更小直径的纳米线很难在纳米孔道中生长,其电化学生长动力学过程还不清楚,电阻率数据缺失。本文在单个蚀刻离子径迹孔道中利用电化学沉积技术成功生长了单根Cu纳米线,其直径仅为64 nm,为目前同方法最细。在此基础上,首次测量了该纳米线的电输运性质并获得了其电阻率数值。研究结果表明,利用电导法可以监测模板中单个孔道的形成和扩孔的动力学过程以及最终的孔径大小。电化学沉积时,沉积电流与沉积时间曲线清晰地揭示了纳米线的沉积动力学过程。I-V曲线研究显示Cu纳米线具有典型的金属特性。其电阻率为3.46 μ?·cm,约是Cu块体材料电阻率的两倍。电阻率增大可能与电子在晶界和表面处的散射有关。Metal nanowires, as one of the most crucial components of nanoelectronic devices in the future, have attracted enormous attention. Therefore, it is of great significance to investigate the electrical properties of single metal nanowires. Herein, the single Cu nanowire with diameter of 64 nm was successfully prepared by using single-ion track template method combined with electrochemical deposition approach, and its I-V curve was measured. Such a diameter represents the thinnest one as comparing the reported ones obtained by the same method. The results illustrated that the process of formation and growth, as well as the final diameter of single nanochannel in template can be monitored and measured by conductance method. During the electrochemical deposition, the dynamic evolution of the deposition of nanowire can be clearly reflected through the deposition current and deposition time. At the same time, I-V measurements reveal that the Cu nanowire has typical metallic characteristic. For the first time, the resistivity of such a thin nanowire is obtained and its resistivity is 3.46 μ?·cm which is around twice that of Cu bulk materials. The increase of resistivity is believed coming from finite size effects and may be related to the electrons scattering at the grain boundaries and surfaces.  相似文献   

12.
The in-plane electrical resistivity and thermoelectric power have been measured on single crystals of La2-xBaxCuO4 at around x=0.125. The room temperature resistivity and thermopower have their maximum values at x=0.125, indicating that the carrier concentration is the minimum and the carriers are most strongly localized at x=0.125. The observed semiconductor-like behaviour can be well described by the weak-localized quasi-two-dimensional state. The steep rise in electric resistivity of the sample at x=0.125 below 70K is attributed to the formation of static stripe-order of holes and spins, which are pinned by the low-temperature tetragonal (LTT) structure, as discovered in La1.48Nd0.4Sr0.12CuO4. The temperature dependence of electric resistivity below 70K is still well described by the formula ρ∝ lnT. A definite change in the slope of thermopower is observed at the low-temperature orthorhombic-LTT structural phase transition temperature. The origin of the 1/8 anomaly is discussed in the text.  相似文献   

13.
Transport and specific heat properties have been studied on the orthorhombic molybdenum oxide γ-Mo4011. The anisotropy of the electrical resistivity establishes that this compound is a quasi two-dimensional metal, as expected from crystal structure data. Both the resistivity and the thermopower show that an electronic transition, probably due to a charge density wave instability takes place at Tc = 100 K. Low temperature specific heat data provide an estimation of the Debye temperature and of the electronic density of states in the low temperature metallic phase.  相似文献   

14.
The effect of electron-phonon scattering processes on the thermoelectric properties of extrinsic graphene was studied. Electrical and thermal resistivity, as well as the thermopower, were calculated within the Bloch theory approximations. Analytical expressions for the different transport coefficients were obtained from a variational solution of the Boltzmann equation. The phonon-limited electrical resistivity ρ(e-ph) shows a linear dependence at high temperatures and follows ρ(e-ph) ~T(4) at low temperatures, in agreement with experiments and theory previously reported in the literature. The phonon-limited thermal resistivity at low temperatures exhibits a ~T dependence and achieves a nearly constant value at high temperatures. The predicted Seebeck coefficient at very low temperatures is Q(T) ~ Π(2)k(2)_(B)/T(3eE_(F), which shows a n(-1/2) dependence with the density of carriers, in agreement with experimental evidence. Our results suggest that thermoelectric properties can be controlled by adjusting the Bloch-Grüneisen temperature through its dependence on the extrinsic carrier density in graphene.  相似文献   

15.
Eu掺杂Si纳米线的光致发光特性   总被引:1,自引:0,他引:1       下载免费PDF全文
范志东  周子淳  刘绰  马蕾  彭英才 《物理学报》2015,64(14):148103-148103
利用Si(111)衬底, 以Au-Al为金属催化剂, 基于固-液-固生长机理, 在温度为1100℃, N2气流量为1.5 L/min、生长时间为30–90 min等工艺条件下, 制备了直径约为100 nm、长度为数微米的高密度、均匀分布、大面积的Si纳米线(~1010 cm-2). 对Si纳米线进行了Eu掺杂, 实验研究了不同长度的Si纳米线以及不同掺杂温度、掺杂时间等工艺参数对Eu离子红光发射的影响, 利用扫描电子显微镜和X射线衍射仪对Si纳米线表面形貌和Eu掺杂后Si纳米线的结晶取向进行了测量和表征; 室温下利用Hitachi F-4600型荧光分光光度计对样品的激发光谱和发射光谱进行了测试和分析. 结果表明: 在Si纳米线生长时间为30 min、掺杂温度为1000℃、 最佳激发波长为395 nm时, 样品最强荧光波长为619 nm (5D07F2); 同时, 还出现了576 nm (5D07F0), 596 nm (5D07F1), 658 nm (5D07F3)和708 nm (5D07F4)四条谱带.  相似文献   

16.
We report our analysis of resistivity data on Nd0.67Sr0.33MnO3 polycrystalline samples as a function of preparative conditions using a bond percolation model for a random mixture of metallic and insulating regions, assuming polaronic transport above and below the metal-insulator (M-I) transition temperature. Our analysis suggests that for oxygen deficient compounds the M-I transition that occurs at a lower temperature than the ferromagnetic transition arises from a percolation of the metallic regions. The temperature dependence of resistivity and thermopower suggests the existence of a bimodal distribution of conductivities.  相似文献   

17.
报道了Cr80-xFe20Mnx(x=10,15,20)合金在10—300K的电阻率和热导率.结果表明样品的电输运性质和热输运性质均与样品的磁状态有关.在SDW反铁磁转变附近,电阻率出现极小.对Neel温度以下电阻率-温度曲线拟合结果表明:取温度相关的能隙函数2△∝√(TN-T)可以很好地描述SDW反铁磁能隙随温度降低而打开的过程.合金在反铁磁转变温度以下表现出与无序样品或者玻璃态样品类似的热导率温度关系,这可能是源于合金中磁性团簇的散射.  相似文献   

18.
Highly aligned Ag nanowires have been synthesized by dc electrodeposition within a hexagonal close-packed nanochannel anodic aluminum oxide template. The pore diameter varies from 20 nm to 50 nm depending on the anodization voltage and temperature for the two types of aqueous solutions, sulphuric and oxalic acids, respectively. The size and morphology of the Ag nanowire arrays were measured by scanning electron microscopy and transmission electron microscopy. The images indicate that the highly aligned Ag nanowires grow in the uniform nanochannels of the anodic alumina template and that the size of the nanowires depends on the size of the nanochannels. X-ray diffraction, selected area electron diffraction pattern and high-resolution transmission electron microscopy images show that the Ag nanowires are single-crystal. The temperature coefficient of resistivity (temperature range from 4.2 K to 300 K) of the Ag nanowire arrays decreases with decreasing diameter of the nanowires. Received: 5 November 2001 / Revised version: 12 March 2002 / Published online: 6 June 2002  相似文献   

19.
ZnO nanorods, nanobelts, nanowires, and tetrapod nanowires were synthesized via thermal evaporation of Zn powder at temperatures in the range 550-600 °C under flow of Ar or Ar/O2 as carrier gas. Uniform ZnO nanowires with diameter 15-25 nm and tetrapod nanowires with diameter 30-50 nm were obtained by strictly controlling the evaporation process. Our experimental results revealed that the concentration of O2 in the carrier gas was a key factor to control the morphology of ZnO nanostructures. The gas sensors fabricated from quasi-one-dimensional (Q1D) ZnO nanostructures exhibited a good performance. The sensor response to 500 ppm ethanol was up to about 5.3 at the operating temperature 300 °C. Both response and recovery times were less than 20 s. The gas-sensing mechanism of the ZnO nanostructures is also discussed and their potential application is indicated accordingly.  相似文献   

20.
The effect of Fe substitution for Co on direct current (DC) electrical and thermal conductivity and thermopower of Ca3(Co1−xFex)4O9 (x = 0, 0.05, 0.08), prepared by a sol–gel process, was investigated in the temperature range from 380 down to 5K. The results indicate that the substitution of Fe for Co results in an increase in thermopower and DC electrical resistivity and substantial (14.9–20.4% at 300K) decrease in lattice thermal conductivity. Experiments also indicated that the temperature dependence of electrical resistivity ρ for heavily substituted compounds Ca3(Co1−xFex)4O9 (x = 0.08) obeyed the relation lnρT−1/3 at low temperatures, T < ~55K, in agreement with Mott’s two-dimensional (2D) variable range hopping model. The enhancement of thermopower and electrical resistivity was mainly ascribed to a decrease in hole carrier concentration caused by Fe substitution, while the decrease of thermal conductivity can be explained as phonon scattering caused by the impurity. The thermoelectric performance of Ca3Co4O9 was not improved in the temperature range investigated by Fe substitution largely due to great increase in electrical resistivity after Fe substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号