首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the systematic changes of surface wettability in one of the most promising transparent conducting oxide materials, Al-doped ZnO (AZO) thin films. It was revealed that the characteristic surface wettability, which would make a key role in adhesion with other layers of optoelectronic device, can be largely changed by Al concentrations and film growth temperature. Keeping the electrical conductivity constant, the water contact angle (WCA) of a 2 mol% AZO film was changed by about 50 °C depending on the surface roughness. In the samples grown at 300 °C, the roughness enhancement was large and a hydrophobic surface formed, whereas in the samples grown at 500 °C a hydrophilic surface formed. We attributed the variation in surface wettability with growth temperature to changes in surface morphology. This result suggests that 2 mol% Al doping concentration can be considered as a critical concentration in changing of surface morphology of AZO as well as in electrical properties.  相似文献   

2.
B. Liu  J. Gao  K.M. Wu  C. Liu 《Solid State Communications》2009,149(17-18):715-717
AlN films were grown at 785 °C on (0001) sapphire substrates by radio-frequency assisted molecular beam epitaxy. Post-growth rapid thermal annealing (RTA) was carried out from 900 to 1200 °C for 10 s in flowing N2. The morphological and structural properties of the AlN epilayers before and after the RTA were studied by atomic force microscopy, x-ray diffraction and transmission electron microscopy. It is found that the threading dislocations can be decreased to an order of magnitude by using an interlayer growth method. The surface roughness (RMS) of the AlN thin films becomes larger with the increase of annealing temperature. The full width at half maximum of AlN (0002) rocking curve reaches its minimum after the RTA at 1000 °C.  相似文献   

3.
We report on investigations of the precipitation of iron in block-cast multicrystalline silicon using the techniques of X-ray beam induced current, X-ray fluorescence microscopy and X-ray absorption microspectroscopy. The samples studied were intentionally contaminated with iron and annealed at temperatures between 850 and 1050 °C. Annealing at 950 °C was found to lead to well detectable iron precipitation inside the grains and at grain boundaries. Small only iron clusters were detected after the 850 °C anneal while no iron clusters were found after the 1050 °C treatment. X-ray absorption near edge structure analyses of the iron clusters revealed mostly iron silicide and in one case iron oxide. Under the given condition at the beamline, the detection sensitivity for iron was estimated to be 4×107 atoms, corresponding to a spherical FeSi2 particle of 40 nm radius.  相似文献   

4.
Ionoluminescence (IL) and photoluminescence (PL) spectra for different rare earth ions (Sm3+ and Dy3+) activated YAlO3 single crystals have been induced with 100 MeV Si7+ ions with fluence of 7.81×1012 ions cm?2. Prominent IL and PL emission peaks in the range 550–725 nm in Sm3+ and 482–574 nm in Dy3+ were recorded. Variation of IL intensity in Dy3+ doped YAlO3 single crystals was studied in the fluence range 7.81×1012–11.71×1012 ions cm?2. IL intensity is found to be high in lower ion fluences and it decreases with increase in ion fluence due to thermal quenching as a result of an increase in the sample temperature caused by ion beam irradiation. Thermoluminescence (TL) spectra were recorded for fluence of 5.2×1012 ions cm?2 on pure and doped crystals at a warming rate of 5 °C s?1 at room temperature. Pure crystals show two glow peaks at 232 (Tg1) and 328 °C (Tg2). However, in Sm3+ doped crystals three glow peaks at 278 (Tg1), 332 (Tg2) and 384 °C (Tg3) and two glow peaks at 278 (Tg1) and 331 °C (Tg2) in Dy3+ was recorded. The kinetic parameters (E, b s) were estimated using glow peak shape method. The decay of IL intensity was explained by excitation spike model.  相似文献   

5.
Nanopatterned sapphire substrates were fabricated by annealing of patterned Al thin films. Square-patterned Al thin films with the diagonal length of 600 nm, period of 1 um and height of ~200 nm were obtained by the Laser Interference Lithography and Reactive Ion Etching. Patterned Al thin films were subsequently subjected to dual stage annealing due to the melting temperature of Al thin films (660 °C). The first comprised a low temperature oxidation anneal. The hillocks formation on Al thin films was minimized with an oxidation annealing at 450 °C for 24 h. The little change in the morphology of patterned Al thin films was observed at 450 °C for 24 h. This was followed by a high temperature annealing to induce growth of the underlying sapphire single crystal to consume the oxide layer. The SEM results show the patterns were retained on sapphire substrates after high temperature annealing at less than 1200 °C. The XRD and Raman results reveal that the orientation of island patterns by dual stage annealing of patterned Al thin films for 24 h at 450 °C, and 1 h at 1000 °C, was the same as that of the sapphire (0001) substrates.  相似文献   

6.
Activated carbon was treated at 5.0 GPa up to 1600 °C and the structural evolution in the graphitization process was investigated. The graphitization temperature is reduced to 1200 °C at 5 GPa, as reflected by x-ray diffraction patterns. Honeycomb-like structures come into being in the high-pressure sintering temperature range of 1000–1100 °C and slice-like structures appear after graphitization. Raman frequency and half width drop drastically near the graphitization temperature, and the appearance of D and D′ lines indicates there are still some disorder structures in the graphitized activated carbon.  相似文献   

7.
We demonstrate a simple low-temperature chemical method to produce metastable hexagonal MoO3 phase nanorods. The structure, chemical purity, thermal stability and optical properties of hexagonal MoO3 are reported. Our results provide a more direct method to produce high quality and stable hexagonal MoO3, which exhibits phase stability up to 400 °C at which point an irreversible phase transition occurs to form orthorhombic MoO3.  相似文献   

8.
In this paper, hollow spherical Cu3P nanopowders were synthesized by using copper sulfate pentahydrate (CuSO4?5H2O) and yellow phosphorus in a mixed solvent of glycol, ethanol and water at 140–180 °C for 12 h. X-ray powder diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), electron diffraction pattern (ED) and transmission electronic microscopy (TEM) studies show that the as-synthesized nanocrystal is pure hexagonal phase Cu3P with a hollow spherical morphology. Based on the TEM observations, a possible aggregation growth mechanism was proposed for the formation of Cu3P hollow structures. Meanwhile, the effects of some key factors such as solvents, reaction temperature and reaction time on the final formation of the Cu3P hollow structure were also discussed.  相似文献   

9.
We report the growth of single crystalline ZnSe nanowires on oxidized Si(100) substrates by molecular-beam epitaxy using Au nano-particles as the catalysts. It was found that average length decreased while the average diameter increased as we increased the temperature from 230 to 320 °C. It was also found that crystal quality of the ZnSe nanowires prepared at 320 °C was poorer than the ZnSe nanowires prepared at 230 °C and 280 °C.  相似文献   

10.
Silver-doped ZnO films were grown on glass substrates by RF reactive magnetron sputtering. The as-grown ZnO:Ag film is insulating but behaves as p-type conduction with a resistivity of 152 Ω cm, a carrier concentration of 2.24×1016 cm?3 and a Hall mobility of 1.83 cm2/V s after annealing in O2 atmosphere at 600 °C for 1 h. The influence of post-annealing temperature and ambience on the electrical, structural and optical properties of the films was investigated.  相似文献   

11.
Samples of p-type ZnO:N films were prepared on glass substrates by thermal oxidation of Zn3N2 precursor, which was produced by reactive magnetron sputtering with a metallic zinc target in Ar/N2 working gas. The microstructures and the electrical and optical properties of the samples were systematically investigated as a function of the annealing temperature. The results indicate that the annealing temperature has strong effects on the conductivity and photoluminescence (PL) properties of the obtained ZnO:N films. With an annealing temperature of 500 °C in oxygen flux, ZnO:N samples show the best p-type characteristics. The doping mechanism and the doping efficiency are briefly discussed based on the experimental results.  相似文献   

12.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

13.
《Current Applied Physics》2014,14(2):156-160
The nonlinear optical single crystals of glycine sodium nitrate were grown by the slow evaporation method. XRD confirmed monoclinic structure. Thermal stability and melting point (225 °C) were investigated. The dielectric behaviour of the crystals in the frequency range 20 Hz–2 MHz at different temperatures is reported in which a ferroelectric to paraelectric phase transition at Tc = 56 °C is observed. The activation energies of GSN were found to be 3.615 eV, 0.593 eV and 0.0733 eV in three temperature regions of conductivity plot due to a hopping conduction mechanism. The crystal has shown high piezoelectric charge coefficient (d33) of 16 pC/N which is nearly double of observed value for γ-glycine single crystal. The spontaneous polarization Ps at room temperature was found to be 1.489 μC/cm2 at applied maximum field of 26 kV/cm (1.194 μC/cm2 at 12 kV/cm) and the pyroelectric coefficient was determined to be 400 μC/m2/°C. High value of squareness parameter (1.93) makes the GSN crystal suitable for switching applications. Detailed investigations of Ferro-/Piezoelectricity were observed for the first time in glycine sodium nitrate crystals which was found to preserve the ferroelectricity even after applying an electric field much higher than the saturation electric field (12–26 kV/cm). Application of GSN crystals as sensor, high power switch gears and storage memories has been established.  相似文献   

14.
110 °C thermoluminescence (TL) peak in quartz is well known due to its pre-dose effect, which is used in dating technique. The generally accepted mechanism for the production of this peak is based on Ge impurity contained in quartz. Its role is to substitute for Si in SiO4 tetrahedron and under irradiation gives rise to [GeO4/e?]? electron centre. Heating for TL read out liberates electron that recombines with hole in [AlO4/h]° or [H3O4/h]° centres emitting photon. The investigation, carried out on blue quartz, green quartz, black quartz, pink quartz, red quartz, sulphurous quartz, milky quartz, alpha quartz and synthetic quartz, has shown that the 110 °C TL peak in all these varieties of quartz has no correlation with the respective Ge content. Electron paramagnetic resonance (EPR) measurements on any of these varieties of quartz revealed a signal with g1=2.0004, g2=1.9986 and g3=1.974 and this signal does not appear to correspond to any known EPR signals in alpha quartz. Furthermore, isothermal decay measurements are carried out on the above mentioned EPR signal and 110 °C TL peak in alpha, blue and green quartz. A close correlation has been observed in the decay behavior. A new mechanism is proposed based on an interstitial O? centre.  相似文献   

15.
In this study, we investigated the fabrication of supersaturated gallium (Ga)–aluminum (Al) liquid alloy and Al3+-doped γ-Ga2O3 nanoparticles (NPs) at near room temperature (60 °C) using sonochemical and sonophysical effects. Supersaturated Ga–Al liquid alloy microparticles (Dav = 1.72 µm) were formed and stabilized at 60 °C by the thermal nonequilibrium field provided by sonochemical hot spots. Compared with liquid Ga, supersaturated Ga–Al liquid alloy was rapidly oxidized to a uniform oxide without Al2O3 or Al deposition. Thus, ultrafine Al3+-doped γ-Ga2O3 NPs were obtained after only 1 h of ultrasonic irradiation at 60 °C. The oxidation of liquid Ga was remarkably accelerated by alloying with metallic Al and ultrasonic irradiation, and the time was shortened. The average diameter and surface area of the γ-Ga2O3-based NPs were 59 nm and 181 m2/g, respectively. Compared with γ-Ga2O3, the optical bandgap of the Al3+-doped γ-Ga2O3 NPs was broadened, and the thermal stability improved, indicating Al3+-doping into the γ-Ga2O3 lattice. However, the lattice constant of γ-Ga2O3 was almost unchanged with or without Al3+-doping. Al3+ was introduced into the defect sites of Ga3+, which were massively induced in the defective spinel structure during ultrasonic processing. Therefore, sonochemical processing, which provides nonequilibrium reaction fields, is suitable for the synthesis of supersaturated and metastable materials in metals and ceramics fields.  相似文献   

16.
V 3O7?H2O nanobelts were prepared by a hydrothermal method at 190 °C using V 2O5?nH2O gel and H2C2O4?2H2O as starting agents. The nanobelts obtained have diameters ranging from 40 to 70 nm with lengths of up to several micrometers. Their morphology and structure have been characterized by XRD, SEM, TEM and IR spectroscopy. The effect of the annealing temperature on the morphology of the resulting product has been investigated. XRD and SEM showed that thermal annealing of the V 3O7?H2O sample in air led to the collapse of the V 3O7?H2O nanobelt structure and the convert into V 2O5 nanobelts. For the first time V 2O5 nanobelts with an ultrahigh aspect-ratio have been obtained in air. Furthermore, electrical conductivity and static magnetic susceptibility measurements have been carried out.  相似文献   

17.
Low-temperature heteroepitaxy (330 °C–430 °C) of Si0.5Ge0.5 and Si0.25Ge0.75 on Si(100) using single-source silyl-germanes [ SiH3GeH3,HSi(GeH3)3] produces monocrystalline structures, smooth and continuous surface morphologies and low defect densities. The metastable compressive strain in these films is dramatically enhanced relative to alternative growth methods. At such low temperatures the material grows seamlessly, conformally, and selectively in the “source/drain” regions of prototypical transistors. These results suggest that films grown via silyl-germanes could have applications in optoelectronics and as stressors for mobility enhancement in Si devices.  相似文献   

18.
The electrical activities of stacking faults (SFs) and partial dislocations in 4H-SiC homoepitaxial films were investigated by using the electron-beam-induced current (EBIC) technique. The basal plane dislocation was dissociated into Si(g) 30° and C(g) 30° partials under electron-beam irradiation, with a SF formed in between. The SF shows bright contrast at RT and dark contrast at 50 K in EBIC images. The reasons were discussed according to the quantum-well state of SF. C(g) 30° partial is always more electrically active than Si(g) 30° partial at each specific accelerating voltage. The EBIC contrasts of those two partials were discussed with the number of recombination centers.  相似文献   

19.
LiCaAlF6 (LiCAF) crystals doped with two different ions (europium and lead) have been investigated as potential new dosimetric materials. The stability of thermally stimulated luminescence (TSL) glow peaks in LiCAF:Eu was evaluated by means of the initial rise technique. The decay times at room temperature of the traps related to the dosimetric glow peaks were found to range between 40 and 2 × 104 years confirming the good dosimetric characteristics of this crystal. The glow curve of LiCAF:Pb is dominated by a peak at approximately 300 °C emitting in the UV region (3P0,11S0 transition of Pb2+) superimposed to a very broad structure at lower temperature (20–200 °C) featuring recombination at an intrinsic defect centre. The anomalous behavior of the low temperature structure during thermal cleaning procedures prevented any reliable numerical analysis of the TSL glow peak at 300 °C.  相似文献   

20.
In the present work policrystals of α − Al2O3 doped with terbium were synthesized using the solvent evaporation method. The samples were prepared using Al(NO3)3·9H2O and Tb(NO3)3·5H2O reagents, with Tb concentrations between 1 and 5 mol% and thermally treated at high temperature above ∼1400 °C. X-ray diffraction measurements showed the α-phase formation of samples. TL glow curve presented an intense peak at ∼190 °C and two other with low intensity at 290 and 350 °C after gamma irradiation. The best doping concentration which presented high luminescence was the sample doped with 3 mol% of Tb. TL spectra and fluorescence measurements showed similar luminescence spectra with lines attribute to Tb3+ ions. A linear behavior to gamma dose between 1 and 20 Gy was observed in TL, using 190 °C peak as well as in OSL signal, this last carried out using 532 nm wavelength stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号