首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Effects of the doping atom (O, Al, and (Al, O)) on structural and electronic properties of the monolayer WS2 have been studied by using first-principles calculations. Results show that the covalent character of W–S bonding has been enhanced after doping. Meanwhile, W–O, Al–S and W–S bonds of (Al, O) co-doped WS2 monolayer have higher covalent character compared with O-doped and Al-doped WS2 monolayer of this work. After doping with Al (or Al, O) atoms, Fermi level moves close to the valence band and the dopant atoms produce the defect energy levels, indicating that Al doped and (Al, O) co-doped WS2 monolayer both have p-type conductivity. O-doped and (Al, O) co-doped WS2 ultrathin films was prepared on Si substrates. Results of Raman spectra show the formation of the O-doped and (Al, O) co-doped WS2 films. Moreover, compared with the pure WS2, the approximate reduction of 0.43 eV and 0.46 eV for W 4f and S 2p in binding energy after (Al, O) co-doped shows that p-type doping of (Al, O) co-doped WS2 has been verified.  相似文献   

2.
Thin epitaxial alumina layers were grown on the Cu(111) surface using simultaneous aluminum deposition and oxygen exposure. Different substrate temperatures during the deposition resulted in layers with different thicknesses, growth rates, crystallinity and epitaxy. Low energy electron diffraction measurements confirmed the epitaxial growth for substrate temperatures above 870 K. The Al 2p doublet was studied by means of photoelectron spectroscopy in order to determine the alumina termination at the metal-oxide interface. A strong dependence on the preparation temperature was found and both aluminum and oxygen terminated interfaces were created.  相似文献   

3.
The electronic and chemical structure of the metal-to-semiconductor interface was studied by photoemission spectroscopy for evaporated Cr, Ti, Al and Cu overlayers on sputter-cleaned as-deposited and thermally treated thin films of amorphous hydrogenated boron carbide (a-B(x)C:H(y)) grown by plasma-enhanced chemical vapor deposition. The films were found to contain ~10% oxygen in the bulk and to have approximate bulk stoichiometries of a-B(3)CO(0.5):H(y). Measured work functions of 4.7/4.5?eV and valence band maxima to Fermi level energy gaps of 0.80/0.66?eV for the films (as-deposited/thermally treated) led to predicted Schottky barrier heights of 1.0/0.7?eV for Cr, 1.2/0.9?eV for Ti, 1.2/0.9?eV for Al, and 0.9/0.6?eV for Cu. The Cr interface was found to contain a thick partial metal oxide layer, dominated by the wide-bandgap semiconductor Cr(2)O(3), expected to lead to an increased Schottky barrier at the junction and the formation of a space-charge region in the a-B(3)CO(0.5):H (y) layer. Analysis of the Ti interface revealed a thick layer of metal oxide, comprising metallic TiO and Ti (2)O (3), expected to decrease the barrier height. A thinner, insulating Al(2)O(3) layer was observed at the Al-to-a-B(3)CO(0.5):H(y) interface, expected to lead to tunnel junction behavior. Finally, no metal oxides or other new chemical species were evident at the Cu-to-a-B(3)CO(0.5):H(y) interface in either the core level or valence band photoemission spectra, wherein characteristic metallic Cu features were observed at very thin overlayer coverages. These results highlight the importance of thin-film bulk oxygen content on the metal-to-semiconductor junction character as well as the use of Cu as a potential Ohmic contact material for amorphous hydrogenated boron carbide semiconductor devices such as high-efficiency direct-conversion solid-state neutron detectors.  相似文献   

4.
Both epitaxial and amorphous ultra-thin alumina films were grown on a Cu-9 at.%Al(1 1 1) substrate by selective oxidation of Al in the alloy in ultra high vacuum. The crystallinity of the alumina films was controlled by oxidation temperature. The photoelectron spectra of Al 2p, O 1s and valence band were measured in-situ during oxidation. The influence of the crystallinity on the interface structure between the alumina films and the substrate was discussed by analyzing the Al 2p spectra composed of multiple peaks. The energy difference between the Fermi level of the substrate and the valence band maximum of the alumina films (band offset) was derived from the valence band spectra. The energy band alignment at the interface between each of the two alumina films and the substrate was revealed by combining the binding energy values of the core levels with the band offset values. The influence of the alumina crystallinity on the band alignment was discussed.  相似文献   

5.
The growth of thin praseodymium oxide films on silicon (111) using small deposition rates under oxygen-deficient conditions was investigated in the range from submonolayer up to six monolayers coverage by transmission electron microscopy (TEM) and photoemission spectroscopy (PES). A detailed analysis of the silicon 2p and oxygen 1 s core level and valence band spectra reveals chemical reactions between deposited species, substrate, and the growing film. Silicate, silicide and oxide species are coexisting over the entire range of coverages investigated. Cross sectional TEM shows silicide inclusions extending from the surface several nanometers into the substrate and affecting the substrate band bending at the interface. The reactivity of the praseodymia overlayer leads to reactions in the as-deposited film even at room temperature and render it unstable. The article aims at providing a coherent picture of the chemistry proceeding during interface formation and film growth at low rates of deposition (0.06 nm/min). The results will be discussed in comparison to studies using higher rates, emphasizing the possibility of growth rate dependent reactions between substrate and deposited material and, consequently, distinctly different film compositions and structures for different rates of deposition.  相似文献   

6.
A Schottky contact to p-type CuGaS2 that showed the highest rectification ratio of approximately 500 ever reported was realized using a Cu electrode on a HF/HNO3-treated surface, as well as an excellent Au ohmic contact on a HF-etched surface. The effective Schottky barrier height of 0.9 eV was obtained from the current–voltage and capacitance–voltage characteristics. The value was smaller by 1.1 eV than that calculated from the values of the work function of Cu and electron affinity of CuGaS2. The results indicated a surface pinning of the Fermi level to certain acceptor-type gap states below the midgap.  相似文献   

7.
《Solid State Ionics》2006,177(19-25):1659-1664
The contact formation of (Ba,Sr)TiO3 thin films and SrTiO3 single crystals with Cu and Au have been studied using X-ray and ultraviolet photoelectron spectroscopy with in situ sample preparation. During metal deposition a partial reduction of the substrate occurs. The Fermi level at the interface is found to be close to the conduction band minimum, indicating small Schottky barrier heights (< 0.2 eV).  相似文献   

8.
The influence of different chemical treatments on the electrical behaviour of n- and p-type Al/Si Schottky junctions was studied. A Schottky barrier height of 0.91 eV was achieved on p-type Si probably due to the unpinning of the Fermi-level at the Al/Si interface. This is one of the highest barrier height values reported so far for a solid-state Schottky junction prepared to p-Si. A doping level reduction was observed in the vicinity of the Si surface for wafers with native oxide and for those boiled in acetone or annealed in forming gas. It was observed unexpectedly that the reactive plasma etch used for the formation of mesa structures decreases the apparent Schottky barrier height. The relation between the sum of n- and p-type Schottky barrier heights and forbidden gap is discussed.  相似文献   

9.
Nanostructured zinc suplhide thin films are successfully deposited on quartz substrates using pulsed laser deposition (PLD) under different argon pressures (0, 5, 10, 15 and 20 Pa). The influence of argon ambience on the microstructural, optical and luminescence properties of zinc sulfide (ZnS) thin films is systematically investigated. The GIXRD data suggests rhombohedral structure for ZnS films prepared under different argon ambience. Self-assembly of grains into well-defined patterns along the y direction is observed in the AFM image of the film deposited under argon pressure 20 Pa. All the films show a blue shift in optical band gap. This can be due to the quantum confinement effect and less widening of conduction and valence band for the films with less thickness and smaller grain size. The PL spectra of the different films are recorded at excitation wavelengths 250 nm and 325 nm and the spectra are interpreted. The PL spectra of the films recorded at excitation wavelength 325 nm show intense yellow emission. The film deposited under an argon pressure of 15 Pa shows the highest PL intensity for excitation wavelength 325 nm. For the PL spectra (excitation at 250 nm), the highest PL intensity is observed for the film prepared under argon free ambience. In our study, 15 Pa is the optimum argon pressure for better crystallinity and intense yellow emission when excited at 325 nm.  相似文献   

10.
Electronic structure of the Ba/3C–SiC(111) interface has been detailed studied in situ in an ultrahigh vacuum using synchrotron radiation photoemission spectroscopy with photon energies in the range of 100–450 eV. The 3C–SiC(111) samples were grown by a new method of epitaxy of low-defect unstressed nanoscaled silicon carbide films on silicon substrates. Valence band photoemission and both the Si 2p, C 1s core level spectra have been investigated as a function of Ba submonolayer coverage. Under Ba adsorption two induced surface bands are found at binding energies of 2 eV and 6 eV. It is obtained that Ba/3C–SiC(111) interface can be characterized as metallic-like. Modification of both the Si 2p and C 1s surface-related components were ascertained and shown to be provided by redistribution effect of electron density between Ba adatoms and both the Si surface and C interface atoms.  相似文献   

11.
Almamun Ashrafi 《Surface science》2010,604(21-22):L63-L66
Pulsed laser deposited ZnO layers on 6H-SiC substrates showed the six-fold symmetry, indicating a two-dimensional epitaxial growth mode. X-ray photoelectron spectroscopy was employed to study the valence band discontinuity and interface formation in the ZnO/6H-SiC heterojunction. The valence band offset was measured to be 1.38 ± 0.28 eV, leading to a conduction band offset value of 1.01 ± 0.28 eV. The resulting band lineup in epitaxial ZnO/6H-SiC heterojunction is determined to be of staggered-type alignment.  相似文献   

12.
We have investigated the chemical and electrical properties of very thin (<32 Å thick) silicon nitride films grown by rapid thermal nitridation of silicon. These films were of interest as a possible means of tailoring the barrier heights of silicon Schottky barrier diodes. Auger and XPS analysis showed that the level of oxygen contamination in the films was very low ([N]/[N]+[O]) =0.85 to 0.95). The oxygen is located primarily at the surface and interface of the films. Metal-nitride-silicon devices were characterized by I-V and C-V techniques. These measurements indicated an increase in barrier heights to p-type substrates and a decrease in barrier heights to n-type substrates compared to values measured in the absence of the nitride layers. The magnitude of the change in barrier height increases with increasing nitride thickness. The barrier height can be varied reproducibly over a wide range. For molybdenum on p-type, this range is greater than half the bandgap. For titanium and molybdenum on p-type diodes, barrier heights higher than 1.0 V can be achieved. These measurements could be explained by a reduction in the density of silicon interface states with increasing nitride thickness or by the presence of positive fixed charge in the nitride layer.  相似文献   

13.
14.
《Current Applied Physics》2010,10(2):687-692
The effect of rapid thermal annealing on the electrical and structural properties of Ni/Au Schottky contacts on n-InP have been investigated by current–voltage (IV), capacitance–voltage (CV), auger electron spectroscopy (AES) and X-ray diffraction (XRD) techniques. The Au/Ni/n-InP Schottky contacts are rapid thermally annealed in the temperature range of 200–500 °C for a duration of 1 min. The Schottky barrier height of as-deposited Ni/Au Schottky contact has been found to be 0.50 eV (IV) and 0.86 eV (CV), respectively. It has been found that the Schottky barrier height decreased with increasing annealing temperature as compared to as-deposited sample. The barrier height values obtained are 0.43 eV (IV), 0.72 eV (CV) for the samples annealed at 200 °C, 0.45 eV (IV) and 0.73 eV (CV) for those at 400 °C. Further increase in annealing temperature to 500 °C the barrier height slightly increased to 0.46 eV (IV) and 0.78 eV (CV) compared to the values obtained for the samples annealed at 200 °C and 400 °C. AES and XRD studies showed the formation of indium phases at the Ni/Au and InP interface and may be the reason for the increase in barrier height. The AFM results showed that there is no significant degradation in the surface morphology (rms roughness of 1.56 nm) of the contact even after annealing at 500 °C.  相似文献   

15.
We report the promising results for Ni–GaP Schottky diode structures manufactured on the substrates with chemically-etched nano-scale surface formations that are responsible for a clearly marked luminescence band located at the energy exceeding the band gap of the bulk GaP. The other peculiarity produced by surface patterning concerns a remarkable redshift of material's optical absorption edge. At the room temperature, the height of potential barrier for Ni–GaP structure is 1.8 eV, with the monochromatic sensitivity peaking at 0.35 A/W. The comparative study of diode performance under different light sources exhibited the pronounced linear photocurrent-illumination dependence for about five orders of illumination magnitude, evidencing good optical and electrical quality of Ni–GaP diodes with surface-modified semiconductor substrate.  相似文献   

16.
We have investigated the effect of zinc concentration ([Zn]/[Cu]=0–100 at%) on nanostructural, optical and electrical properties of CuS–ZnS binary thin films grown on glass substrate by the spray pyrolysis technique. X-ray diffraction analysis showed that the films were crystallized with mixed structures of CuS hexagonal and ZnS cubic structure. UV–vis optical measurements analysis showed that these binary films have a relatively high absorption coefficient (~105 cm?1) in the visible spectrum with a direct band gap in the range of 2.57–2.45 eV in agreement with the corresponding room temperature PL spectra. The electrical studies showed that all these samples have a p-type conductivity and the free hole density decreases with increasing [Zn]/[Cu] molar ratio, in agreement with the reflectance spectra of the layers, originating from plasma oscillations.  相似文献   

17.
Using angle-resolved photoemission spectroscopy we measured the evolution of the electronic properties of the Pentacene (Pn)/Bi(0001) interface. From thickness dependent photoemission spectra of the substrate and Pn film we conclude that Pn growth is epitaxial. Pentacene highest occupied molecular orbital (HOMO) valence band features are identical for sub-monolayer (ML) as well as for thick films which suggests a thickness independent film morphology. The Pn/Bi interaction is weak and results in a lowering of the HOMO binding energy by 180 ± 5 meV and 80 ± 5 meV for the first and second MLs respectively. The interface dipole (ID) is fully developed over the first ~ 1.2 ML of Pn coverage and has a value of ID = 310 ± 10 meV. The hole injection barrier across the interface is Φh = 1.03 ± 0.01 eV.  相似文献   

18.
《Current Applied Physics》2010,10(3):761-765
The forward bias current–voltage (I–V) characteristics of Al/Rhodamine-101/n-GaAs structure have been investigated in the temperature range of 80–350 K. It has been seen a decrease in ideality factor (n) and an increase in the zero-bias barrier height (BH) with an increase in temperature. It has been seen that such a behavior of the BH and n obey Gaussian distribution of the BHs due to the BH inhomogeneities at the metal/semiconductor (MS) interface. The very strong temperature dependence of ideality factor of the structure has shown that the current processes occurring in the organic layer at the MS interface would be a possible candidate such as trap-charge limited conduction in determining the current at the intermediate and high bias regimes. Furthermore, it has been show that the Rh101 can be used to vary effective BHs for the metal/GaAs Schottky diodes. As a result, it has been determined that the BH value for conventional Al/n-GaAs SBD is remarkably higher than our own values of 0.68 eV obtained for the Al/Rh101/n-GaAs at 290 K.  相似文献   

19.
Pan S  Liu Q  Ming F  Wang K  Xiao X 《J Phys Condens Matter》2011,23(48):485001
Using scanning tunneling spectroscopy, we have studied the interface effect on quantum well states of Pb thin films grown on various metal-terminated (Pb, Ag, and Au) n-type Si(111) surfaces and on two different p-type Si(111) surfaces. The dispersion relation E(k) of the electrons of the Pb film and the phase shift at the substrate interface were determined by applying the quantization rule to the measured energy positions of the quantum well states. Characteristic features in the phase shift versus energy curves were identified and were correlated to the directional conduction band of the silicon substrate and to the Schottky barrier formed between the metal film and the semiconductor. A model involving the band structure of the substrate, the Schottky barrier, and the effective thickness of the interface was introduced to qualitatively but comprehensively explain all the observed features of the phase shift at the substrate interface. Our physical understanding of the phase shift is critically important for using interface modification to control the quantum well states.  相似文献   

20.
《Current Applied Physics》2010,10(4):1123-1131
Un-doped and (Cu, Fe, and Co)-doped SnO2 were studied using films deposited by spray pyrolysis. Room temperature cathodoluminescence (CL) was measured. Differences in CL spectra were observed as a function of deposition parameters (Tsub-350–550 °C), the nature and concentration of dopants (0–16 at.%), and the resulting high annealing temperature (Tan = 700–950 °C). A possible luminescence mechanism has been discussed. It was established that changes taking place in CL spectra were caused by the change of both the grain size and crystallinity (stoichiometry) of the surface layer. It was concluded that radiative recombination occurs through shallow donor levels associated with O-vacancies and trapped centers. It was assumed that in SnO2 there are apparently three types of defects forming deep levels located at 0.8–0.9, 1.3–1.4, and ∼1.6 eV from the top of the valence band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号