首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The type of a phase transition in the quasi-equilibrium system of exciton polaritons in a two-dimensional optical microcavity has been analyzed. It has been shown that, although the system contains two types of bosons undergoing mutual transformations into each other, only one phase transition to the superfluid state with the quasilong-range order occurs in the two-dimensional system. This phase transition is a Kosterlitz-Thouless phase transition. A new physical implementation—excitons in a photon crystal—has been proposed for the Bose condensation of exciton polaritons. The superfluid properties of the ordered phase are discussed, and the superfluid density and Kosterlitz-Thouless transition temperature have been calculated in the low-density approximation.  相似文献   

2.
《Physics letters. A》1999,260(5):400-405
The superfluidity and Bose–Einstein condensation of indirect excitons in coupled quantum dots or trapped atoms with induced dipole momenta (or dipole molecules) are studied by path-integral Monte Carlo simulations. The temperature dependencies of superfluid and Bose-condensed fraction are calculated at different strengths of interaction. Using Kosterlitz–Thouless recursion relations, we also predict the critical temperature in a macroscopic system of indirect excitons.  相似文献   

3.
A dipole-oriented two-dimensional exciton system in electrically biased GaAs/AlGaAs coupled quantum wells has been studied through photoluminescence. The system has a sample-dependent built-in random potential which traps excitons at low temperature. The average photoluminescence photon energy shows a sudden reduction when the excitation intensity exceeds a critical value at low temperatures. This suggests a phase transition from a Bose glass to superfluid phase.  相似文献   

4.
We consider excitons in a two-dimensional periodic potential and study the linear response of the excitonic superfluid to an electromagnetic wave at low and high densities. It turns out that the static structure factor for small wavevectors is very sensitive to a change of density and temperature. It is a consequence of the fact that thermal fluctuations play a crucial role at small wavevectors, since exchanging the order of the two limits, zero temperature and vanishing wavevector, leads to different results for the structure factor. This effect could be used for high accuracy measurements in the superfluid exciton phase, which might be realized by a gated electron-hole gas, for instance, in coupled quantum wells or double layer materials. The transition of the exciton system from the superfluid state to a non-superfluid state and its manifestation by light scattering are discussed.  相似文献   

5.
The luminescence of interwell excitons in double quantum wells GaAs/AlGaAs (n-i-n heterostructures) with large-scale fluctuations of random potential in the heteroboundary planes was studied. The properties of excitons whose photoexcited electron and hole are spatially separated in the neighboring quantum wells were studied as functions of density and temperature within the domains on the scale less than one micron. For this purpose, the surfaces of the samples were coated with a metallic mask containing specially prepared holes (windows) of a micron size an less for the photoexcitation and observation of luminescence. For weak pumping (less than 50 μW), the interwell excitons are strongly localized because of small-scale fluctuations of a random potential, and the corresponding photoluminescence line is inhomogeneously broadened (up to 2.5 meV). As the resonant excitation power increases, the line due to the delocalized excitons arises in a thresholdlike manner, after which its intensity linearly increases with increasing pump power, narrows (the smallest width is 350 μeV), and undergoes a shift (of about 0.5 μeV) to lower energies, in accordance with the filling of the lowest state in the domain. With a rise in temperature, this line disappears from the spectrum (T c ≤ 3.4 K). The observed phenomenon is attributed to Bose-Einstein condensation in a quasi-two-dimensional system of interwell excitons. In the temperature range studied (1.5–3.4 K), the critical exciton density and temperature increase almost linearly with temperature.  相似文献   

6.
The effect of Coulomb drag on a gas of dipole excitons in spatially separated two-dimensional quantum wells containing electron and exciton gases is studied theoretically. The Coulomb drag of excitons can be used to control exciton transport in transistor structures whose active element is a two-dimensional gas of dipole excitons. Expressions for the exciton cross conductivity as a function of temperature are obtained for the diffusion and ballistic transport regimes. For each regime, the limiting cases in terms of the ratio of the Coulomb interaction screening length to the distance between the gases are analyzed. It is shown that, at temperatures exceeding considerably the exciton-gas degeneracy temperature, the cross conductivity is independent of the temperature, while in the opposite case it vanishes exponentially.  相似文献   

7.
The effect of a random field caused by impurities, interface roughness and so on, on the optical properties and superfluidity of a quasi-two-dimensional system of excitons is studied. The influence of a random field on the density of the superfluid component of excitonic systems at low temperatures is investigated. For quasi-two-dimensional excitonic systems in a random field the Kosterlitz–Thouless temperature in the superfluid state is calculated. The superfluidity and Bose–Einstein condensation of indirect excitons in coupled quantum dots are studied. Magnetoexciton light absorption in the disordered quantum wells is considered. The two-particle problem of the magnetoexciton motion in the external field depending on the external magnetic field is reduced to the one-particle motion with effective magnetic mass in some effective field. The energy and optical absorption of the magnetoexciton in a single and coupled quantum dots are studied using the effective-magnetic-mass Hamiltonian. In the coherent potential approximation the coefficient of magnetoexciton optical absorption in single and coupled quantum wells is calculated. In the strong magnetic fields the exciton peak decreases with magnetic field increasing in accordance with the experimental data. The localization of direct and indirect magnetoexcitons is investigated. Received: 14 April 2000 / Accepted: 17 April 2000 / Published online: 6 September 2000  相似文献   

8.
Photoluminescence of interwell excitons in GaAs/AlGaAs double quantum wells (n-i-n heterostructure) containing large-scale random potential fluctuations in the planes of heteroboundaries is studied. The properties of excitons, in which a photoexcited electron and a hole are spatially separated in neighboring quantum wells, were investigated upon variation of the power density of off-resonance laser excitation and temperature (1.5–4.2 K), both under lateral (in the heteroboundary plane) confinement of the excitation region to a few micrometers and without such a limitation (directly from the region of laser-induced photoexcitation focused to a spot not exceeding 30 μ. Under low pumping (with a power smaller than a microwatt), interwell excitons are strongly localized due to small-scale random potential fluctuations and the corresponding photoluminescence line is nonhomogeneously broadened to 2.5–3.0 meV. With increasing pumping power, the narrow line of delocalized excitons with a width of approximately 1 meV emerges in a threshold manner (the intensity of this line increases superlinearly near the threshold with increasing pumping). For a fixed pumping, the intensity of this line decreases linearly upon heating until it completely vanishes from the spectrum. The observed effect is attributed to Bose condensation in a quasi-two-dimensional system of interwell excitons. Within the proposed model, we show that the linear mode in the behavior of the luminescence intensity until its disappearance in the continuum of the photoluminescence spectrum upon a change in temperature is observed only for the condensed part of interwell excitons. At the same time, the luminescence of the above-the-condensate part of excitons is almost insensitive to temperature variations in the temperature range studied.  相似文献   

9.
The theory of what happens to a superfluid in a random field, known as the “dirty boson” problem, directly relates to a real experimental system presently under study by several groups, namely excitons in coupled semiconductor quantum wells. We consider the case of bosons in two dimensions in a random field, when the random field can be large compared to the repulsive exciton–exciton interaction energy, but is small compared to the exciton binding energy. The interaction between excitons is taken into account in the ladder approximation. The coherent potential approximation (CPA) allows us to derive the exciton Green's function for a wide range of the random field strength, and in the weak-scattering limit CPA results in the second-order Born approximation. For quasi-two-dimensional excitonic systems, the density of the superfluid component and the Kosterlitz–Thouless temperature of the superfluid phase transition are obtained, and are found to decrease as the random field increases.  相似文献   

10.
Using the Green's function approach, the density–density correlation function and the dielectric function in the random-phase approximation for a quasi-two-dimensional (quasi-2D) dipolar Bose gas are derived. From the pole of the density correlation function, by considering thermally induced roton-like excitations, the excitation spectrum of the system is calculated. It is shown that the position and depth of the roton minimum of the excitation spectrum are tunable by changing the temperature. To show how the position of the roton minimum influences the phenomenon of superfluidity, the superfluid density of the system is obtained and it is shown that the interplay of the thermal rotonization, contact and dipole–dipole interaction (DDI) can affect the superfluid fraction of a quasi-2D Bose gas. It is found that contact, DDI interactions, and thermally induced rotons enhance the fluctuations and reduce the superfluid density. In the absence of DDI and thermally induced rotons, the usual T3 dependence of superfluid density in 2D is obtained and the correction T4 term arises from DDI. It is shown that if the roton minimum is close to zero, the thermally induced rotons change the linear temperature dependence of the superfluid fraction, leading to a transition to nontrivial supersolid phase.  相似文献   

11.
Bound electron-hole pairs—excitons—are Bose particles with small mass. Exciton Bose-Einstein condensation is expected to occur at a few degrees Kelvin—a temperature many orders of magnitude higher than for atoms. Experimentally, an exciton temperature well below 1 K is achieved in coupled quantum well (CQW) semiconductor nanostructures. In this contribution, we review briefly experiments that signal exciton condensation in CQWs: a strong enhancement of the indirect exciton mobility consistent with the onset of exciton superfluidity, a strong enhancement of the radiative decay rate of the indirect excitons consistent with exciton condensate superradiance, strong fluctuations of the indirect exciton emission consistent with critical fluctuations near the phase transition, and a strong enhancement of the exciton scattering rate with increasing concentration of the indirect excitons revealing bosonic stimulation of exciton scattering. Novel experiments with exciton condensation in potential traps, pattern formation in exciton system and macroscopically ordered exciton state will also be reviewed briefly.  相似文献   

12.
In this work we study the phase diagram of indirect excitons in coupled quantum wells and show that the system undergoes a phase transition to an unbound electron-hole plasma. This transition is manifested as an abrupt change in the photoluminescence linewidth and peak energy at some critical power density and temperature. By measuring the exciton diamagnetism, we show that the transition is associated with an abrupt increase in the exciton radius. We find that the transition is stimulated by the presence of direct excitons in one of the wells and show that they serve as a catalyst of the transition.  相似文献   

13.
A series of GaAs/AlAs multiple-quantum wells doped with Be is grown by molecular beam epitaxy. The photoluminescence spectra are measured at 4, 20, 40, 80, 120, and 200 K, respectively. The recombination transition emission of heavy-hole and light-hole free excitons is clearly observed and the transition energies are measured with different quantum well widths. In addition, a theoretical model of excitonic states in the quantum wells is used, in which the symmetry of the component of the exciton wave function representing the relative motion is allowed to vary between the two- and threedimensional limits. Then, within the effective mass and envelope function approximation, the recombination transition energies of the heavy- and light-hole excitons in GaAs/AlAs multiple-quantum wells are calculated each as a function of quantum well width by the shooting method and variational principle with two variational parameters. The results show that the excitons are neither 2D nor 3D like, but are in between in character and that the theoretical calculation is in good agreement with the experimental results.  相似文献   

14.
在掺Si的GaAs/AlGaAs二维电子气(2DEG)结构中,得到μ2K=1.78×106cm2/(V·s)的高迁移率.在低温(2K)和高磁场(6T)的条件下,对样品进行红 光辐照,观察到持久光电导(PPC)效应,电子浓度在光照后显著增加.通过整数量子霍尔效应 (IQHE)和Shubnikov-de Haas (SdH)振荡的测量,研究了2DEG的子带电子特性.样品在低温光 照后2DEG中第一子带和第二子带的电子浓度同时随电子总浓度的增加而增加;而且电子迁移 率也明显提高.同时,通过整数霍尔平台的宽度对光照前后电子的量子寿命变短现象作了理 论分析. 关键词: 二维电子气 量子霍尔效应 SdH振荡 持久光电导效应  相似文献   

15.
A one-dimensional (1D) Bose system with dipole-dipole repulsion is studied at zero temperature by means of a quantum Monte Carlo method. It is shown that, in the limit of small linear density, the bosonic system of dipole moments acquires many properties of a system of noninteracting fermions. At larger linear densities, a variational Monte Carlo calculation suggests a crossover from a liquidlike to a solidlike state. The system is superfluid on the liquidlike side of the crossover and is normal deep on the solidlike side. Energy and structural functions are presented for a wide range of densities. Possible realizations of the model are 1D Bose atomic systems, with permanent dipoles or dipoles induced by static field or resonance radiation; or indirect excitons in coupled quantum wires; etc. We propose parameters of a possible experiment and discuss manifestations of the zero-temperature quantum crossover.  相似文献   

16.
The luminescence of interwell excitons in GaAs/AlGaAs double quantum wells (n-i-n heterostructures) containing large-scale random-potential fluctuations was studied. The study dealt with the properties of an exciton whose photoexcited electron and hole are spatially divided between the neighboring quantum wells under density variation and at temperatures of down to 0.5 K. We investigated domains ∼1 μm in size, which act as macroscopic exciton traps. Once the resonance laser pump power reaches a certain threshold, a very narrow delocalized exciton line appears (with a width less than 0.3 meV), which grows strongly in intensity with increasing pump power and shifts toward lower energies (by approximately 0.5 meV) in accordance with the exciton buildup in the lowest state in the domain. As the temperature increases, this spectral line disappears in a nonactivated manner. This phenomenon is assigned to Bose condensation occurring in the quasi-two-dimensional system of interwell excitons. The critical exciton density and temperature were determined within the temperature interval studied (0.5 to 3.6 K), and a phase diagram specifying the exciton condensate region was constructed. __________ Translated from Fizika Tverdogo Tela, Vol. 46, No. 1, 2004, pp. 168–170. Original Russian Text Copyright ? 2004 by Dremin, Larionov, Timofeev.  相似文献   

17.
The luminescence of interwell excitons in double quantum wells based on GaAs/AlGaAs semiconductor heterostructures (n-i-n structures) in a lateral trap prepared with the use of an inhomogeneous electric field was studied at helium temperatures. A rather strong and inhomogeneous electric field occurred in the depth of the heterostructure when a current passed through the contact between the conducting tip of a tunneling microscope and the heterostructure surface to the bulk region containing a built-in gate. Because of the Stark shift of energy bands in the electric field, the photoexcited electrons and holes are spatially separated in neighboring quantum wells by a tunnel-transparent barrier and are bound into interwell quasi-two-dimensional excitons. These excitons have a dipole moment even in the ground state. Therefore, electrostatic forces in the inhomogeneous electric field cause the excitons to move in the plane of quantum wells toward the maximum field region and eventually accumulate in the lateral trap artificially prepared in such a way. The maximum trap depth achieved through the inhomogeneous electric field was 13.5 meV, and its lateral size was about 10 μm. It is shown that, in the traps prepared in this way, photoexcited interwell excitons behave with increasing concentration at sufficiently low temperatures (T=2K) in the same fashion as in the lateral traps caused by large-scale fluctuations of the random potential. At concentrations exceeding the percolation threshold, the interwell excitons condense into the lowest energy state in the trap.  相似文献   

18.
We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r)∝rw with w=1,2, or −2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them.  相似文献   

19.
报道了调制掺杂的ZnSe/BeTe/ZnSe Ⅱ型量子阱(type-Ⅱ QW)在低温(2—5 K)条件下的光致发光(PL),光致发光激发(PLE)和磁性光致发光(magneto-PL)光谱的实验结果. 观察到非掺杂样品的PL有两个很强的主发光峰而掺杂样品只有一个的奇异发光. PL直线偏振度和PLE的测量结果都表明了这些空间间接型跃迁PL是来自两个异质结界面的贡献,非掺杂样品的两个主发光峰的分离则是起因于QW结构中的内秉电场(built-in electric field).在平行于QW生长方向的强磁场中, 关键词: 光致发光 二维电子气 带电激子 Ⅱ型量子阱  相似文献   

20.
The time-resolved secondary emission of resonantly created excitons in GaAs quantum wells is studied using femtosecond up-conversion spectroscopy. The behaviour of the rise and decay of the secondary emission and reflectivity in quantum wells is strongly dependent upon the disorder at the interfaces, the exciton density and the temperature. In the case of low densities and temperatures the emission is independent of the exciton density and rises quadratically in time, in excellent agreement with recent theory for Rayleigh scattering from two-dimensional excitons subjected to disorder. These rise times are compared directly with times measured by time-integrated four-wave mixing (FWM). The comparison of the dynamics displayed in time-resolved secondary radiation and time-integrated FWM provide a clear understanding of the coherence properties of QW excitons in the first few picoseconds after excitation. High-contrast oscillations that are due to quantum beats between the heavy- and light-hole 1s-states are seen. The visibility decay at very low densities is long ps and is related to the action of potential fluctuations on the scattering of heavy-hole and light-hole excitons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号