首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Understanding the normal state transport properties in hole-doped high-temperature cuprate superconductors (HTCSs) is a challenging task which has been widely believed to be one of the key steps toward revealing the pairing mechanism of high-temperature superconductivity. Here, we present a true intrinsic and universal doping dependence of in-plane dc conductivity for all underdoped HTCSs. The doping dependence of in-plane dc conductivity normalized to that at optimal doping can be represented by a simple exponential formula. The doping behavior of the square of the nodal Fermi velocity derived by the high-resolution laser-based angle-resolved photoemission spectroscopy in the superconducting state follows reasonably well the universal intrinsic doping behavior. Our findings suggest a commonality of the low-energy quasiparticles both in the normal and superconducting states that place a true universal and stringent constraint on the mechanism of high-temperature superconductivity for HTCSs.  相似文献   

2.
Low-temperature heat transport was used to investigate the ground state of high-purity single crystals of the lightly doped cuprate YBa2Cu3O6.33. Samples were measured with doping concentrations on either side of the superconducting phase boundary. We report the observation of delocalized fermionic excitations at zero energy in the nonsuperconducting state, which shows that the ground state of underdoped cuprates is a thermal metal. Its low-energy spectrum appears to be similar to that of the d-wave superconductor, i.e., nodal. The insulating ground state observed in underdoped La2-xSrxCuO4 is attributed to the competing spin-density-wave order.  相似文献   

3.
We present broadband infrared ellipsometry measurements of the c-axis conductivity of underdoped RBa_{2}Cu_{3}O_{7-delta} (R=Y, Nd, and La) single crystals. Our data show that separate energy scales are underlying the redistributions of spectral weight due to the normal state pseudogap and the superconducting gap. Furthermore, they provide evidence that these gaps do not share the same electronic states and do not merge on the overdoped side. Accordingly, our data are suggestive of a two gap scenario with a pseudogap that is likely extrinsic with respect to superconductivity.  相似文献   

4.
5.
The one-particle spectral function of a state formed by superconducting (SC) clusters is studied via Monte Carlo techniques. The clusters have similar SC amplitudes but randomly distributed phases. This state is stabilized by competition with the antiferromagnetism expected to be present in the cuprates and after quenched disorder is introduced. A Fermi surface composed of disconnected segments, i.e., Fermi arcs, is observed between the critical temperature T_(c) and the cluster formation temperature scale T*.  相似文献   

6.
Metals approaching the Mott insulator generate a new hierarchy in the electronic structure accompanied by an electron differentiation with emergence of strongly momentum dependent structure, beyond the Mott-Hubbard, Brinkman-Rice and Slater pictures of the Mott transition. To consider such nonlinear phenomenon, we develop an analytic nonperturbative theory based on operator projections combined with a self-consistent treatment of the low-energy excitations. This reproduces the Hubbard bands, Mott gap, spin fluctuations, mass divergence, diverging charge compressibility, and strongly renormalized flat and damped dispersion similar to angle-resolved photoemission data in high-Tc cuprates. Electronic spectra show a remarkable similarity to numerical results.  相似文献   

7.
We study tunneling spectroscopy between a normal metal and an underdoped cuprate superconductor modeled by a phenomenological theory in which the pseudogap is a precursor to the undoped Mott insulator. In the low barrier tunneling limit, the spectra are enhanced by Andreev reflection only within a voltage region of the small superconducting energy gap. In the high barrier tunneling limit, the spectra show a large energy pseudogap associated with single particle tunneling. Our theory semiquantitatively describes the two gap behavior observed in tunneling experiments.  相似文献   

8.
SN Bhatia 《Pramana》2002,58(5-6):817-825
We have measured the in-plane resistivity of Bi2Sr2CaCu2O8+δ and Tl2Ba2 CaCu2O8+δ single crystals in the temperature range 70–300 K. The thermodynamic fluctuations in the conductivity of both the samples start around ∼ 125 K. We find the Lawrence and Doniach [1] model to be inadequate to describe the fluctuation conductivity in these materials. The modification suggested by Ramallo et al [4] where by the conductivity is enhanced due to the presence of two superconducting layers in each unit cell is also not adequate. We suggest the fluctuation conductivity to be reduced due to the reduction in the density of states (DOS) of the quasiparticles which results due to the formation of Cooper pairs at the onset of the fluctuations. The data agrees with the theory proposed by Dorin et al [5] which takes into account this reduction in DOS.  相似文献   

9.
The spectacular changes of the A(1g)-polarized Raman spectra of trilayer and four-layer high-T(c) cuprate superconductors below T(c) observed in recent experiments can be explained in terms of a new type of excitation that occurs in these systems, a Raman active c-axis plasmon. Its frequency, intensity, resonance properties, polarization properties, and coupling to phonon modes involving vibrations of the planar oxygens are estimated and shown to agree with those of the observed A(1g) superconductivity-induced electronic peak.  相似文献   

10.
A microscopic theory for the electron spectrum of the CuO2 plane within an effective p-d Hubbard model is proposed. The Dyson equation for the single-electron Green’s function in terms of the Hubbard operators is derived and solved self-consistently for the self-energy evaluated in the noncrossing approximation. Electron scattering on spin fluctuations induced by the kinematic interaction is described by a dynamical spin susceptibility with a continuous spectrum. The doping and temperature dependence of electron dispersions, spectral functions, the Fermi surface, and the coupling constant λ are studied in the hole-doped case. At low doping, an arc-type Fermi surface and a pseudogap in the spectral function close to the Brillouin zone boundary are observed. The text was submitted by the authors in English.  相似文献   

11.
Raman and angle-resolved photoemission spectroscopy experiments have demonstrated that in superconducting underdoped cuprates nodal and antinodal regions are characterized by two energy scales instead of the one expected in BCS theory. The nodal scale decreases with underdoping while the antinodal one increases. Contrary to the behavior expected for an increasing energy scale, the antinodal Raman intensity decreases with decreasing doping. Using the Yang-Rice-Zhang model, we show that these features are a consequence of the nonconventional nature of the superconducting state in which superconductivity and pseudogap correlations are both present and compete for the phase space.  相似文献   

12.
We investigate the effects of oxygen vacancies on the magnetic properties and superconducting transition temperature of high-temperature cuprate superconductors. Starting with the d-p Hamiltonian, we simultaneously employ the coherent potential approximation to account for the effects of oxygen vacancies, and the fluctuation-exchange scheme to address the copper-site Coulomb interactions. Our results show that the presence of oxygen vacancies weakens the antiferromagnetic spin fluctuations of d-electrons subsequently lowering the superconducting transition temperature.  相似文献   

13.
14.
We study the dynamical spin susceptibility of a correlated d-wave superconductor (dSC) in the presence of nonmagnetic disorder, using an unrestricted Hartree-Fock approach. This model provides a concrete realization of the notion that disorder slows down spin fluctuations, which eventually "freeze out." The evolution of disorder-induced spectral weight transfer agrees qualitatively with experimental observations on underdoped cuprate superconductors. For sufficiently large disorder concentrations, static spin density wave (SDW) order is created when droplets of magnetism nucleated by impurities overlap. We also study the disordered stripe state coexisting with a dSC and compare its magnetic fluctuation spectrum to that of the disorder-generated SDW phase.  相似文献   

15.
We show that the unusual doping dependence of the isotope effects on transition temperature and zero temperature in-plane penetration depth naturally follows from the doping driven 3D-2D crossover and the 2D quantum superconductor to insulator transition in the underdoped limit. Since lattice distortions are the primary consequence of isotope substitution, our analysis clearly reveals the strong involvement of lattice degrees of freedom in mediating superconductivity.  相似文献   

16.
利用平均场t-t′-U-V-Vc模型,通过自洽求解Bogoliubov-de Gennes方程,研究了高温超导体中涡旋结构的相变.发现增大原位排斥势U,自旋密度波、电荷密度波以及d波序参量由棋盘结构转变为条纹结构.模型哈密顿量中引入合适强度的长程库仑势后,欠掺杂高温超导体样品中也可以出现二维或者棋盘结构,结果与文献报道的扫描隧道显微镜实验结果一致. 关键词: 高温超导 涡旋结构 长程库仑势  相似文献   

17.
A new phenomenology is proposed for the superfluid density rhos of strongly underdoped cuprate superconductors based on recent data for ultraclean single crystals of YBa2Cu3O7-x. We show that the puzzling departure from Uemura scaling and the decline of the slope as the Tc=0 quantum critical point is approached can be understood in terms of the renormalization of quasiparticle effective charge by quantum fluctuations of the superconducting phase. We then employ a (3+1)-dimensional XY model to calculate, within particular approximations, the renormalization of rhos and its slope, explain the new phenomenology, and predict its eventual demise close to the quantum critical point.  相似文献   

18.
Striped high-T(c) superconductors such as La(2-y-x)Nd(y)Sr(x)CuO(4) and La(2-x)Ba(x)CuO(4) near x = 1/8 show a fascinating competition between spin and charge order and superconductivity. A theory for these systems therefore has to capture both the spin correlations of an antiferromagnet and the pair correlations of a superconductor. For this purpose we present here an effective Hartree-Fock theory incorporating both electron pairing with finite center-of-mass momentum and antiferromagnetism. We show that this theory reproduces the key experimental features such as the formation of the antiferromagnetic stripe patterns at 7/8 band filling or the quasi-one-dimensional electronic structure observed by photoemission spectroscopy.  相似文献   

19.
20.
Scaling relations between the superconducting transition temperature T(c), the superfluid stiffness rho(s), and the normal state conductivity sigma(0)(T(c)) are identified within the class of molecular superconductors. These new scaling properties hold as T(c) varies over 2 orders of magnitude for materials with differing dimensionality and contrasting molecular structure and are dramatically different from the equivalent scaling properties observed for cuprate superconductors. These scaling relations place strong constraints on theories for molecular superconductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号