首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the first resonant electronic Raman spectroscopy study of discrete electronic transitions within small p-doped self-assembled Si/Ge quantum dots (QDs). A heavy hole (hh) to light hole (lh) Raman transition with a dispersionless energy of 105 meV and a resonance energy of the hh states to virtually localised electrons at the direct band gap of 2.5 eV are observed. The hh–lh transition energy shifts to lower values with increasing annealing temperature due to significant intermixing of Si and Ge in the QDs. Structural parameters of the small Si/Ge dots have been determined and introduced into 6-band k·p valence band structure calculations. Both the value of the electronic Raman transition of localised holes as well as the resonance energy at the E0 gap are in excellent agreement with the calculations.  相似文献   

2.
The authors investigate the effect of the fluorine doping on the electronic properties of HfO2 in order to realize the perfect passivation of oxygen vacancy (Vo) with no excess charges, and with no band gap narrowing. Introducing of substitutional fluorine (Fs) can avoid deterioration in a gate oxide caused due to oxygen vacancies. However, introduction of fluorine alone adversely induces excess charges in gate oxide. Our calculated results provide new several dopants to control the electronic properties of HfO2 in purpose of achieving a large energy gain for the most stable state, no band gap narrowing, and also no excess charges. Here, two dopant pairs, Fs-Ns, and Fs-Als, are proposed.  相似文献   

3.
To deeply understand the effects of Si/N-codoping on the electronic structures of TiO2 and confirm their photocatalytic performance, a comparison theoretical study of their energetic and electronic properties was carried out involving single N-doping, single Si-doping and three models of Si/N-codoping based on first-principles. As for N-doped TiO2, an isolated N 2p state locates above the top of valence band and mixes with O 2p states, resulting in band gap narrowing. However, the unoccupied N 2p state acts as electrons traps to promote the electron-hole recombination. Using Si-doping, the band gap has a decrease of 0.24 eV and the valence band broadens about 0.30 eV. These two factors cause a better performance of photocatalyst. The special Si/N-codoped TiO2 model with one O atom replaced by a N atom and its adjacent Ti atom replaced by a Si atom, has the smallest defect formation energy in three codoping models, suggesting the model is the most energetic favorable. The calculated energy results also indicate that the Si incorporation increases the N concentration in Si/N-codoped TiO2. This model obtains the most narrowed band gap of 1.63 eV in comparison with the other two models. The dopant states hybridize with O 2p states, leading to the valence band broadening and then improving the mobility of photo-generated hole; the N 2p states are occupied simultaneously. The significantly narrowed band gap and the absence of recombination center can give a reasonable explanation for the high photocatalytic activity under visible light.  相似文献   

4.
梁培  王乐  熊斯雨  董前民  李晓艳 《物理学报》2012,61(5):53101-053101
采用密度泛函理论平面波超软赝势方法, 计算并分析了Mo/X(B, C, N, O, F)共掺杂TiO2体系的形成能、电子结构和光学性质, 研究了共掺杂协同效应对于计算体系光催化性能的影响机制. 首先计算出不同掺杂体系的态密度及能带结构, 利用能带理论分析了共掺杂效应对于禁带宽度的调控作用, 进而分析了共掺杂对TiO2光催化能力和稳定性的协同作用. 结合电荷密度图, 分析原子间的电荷转移情况, 得到计算体系中各原子成键状态. 最后, 结合光吸收谱线分析得出Mo/C共掺杂类型在调制TiO2体系中可见光波段的光催化性能上优势明显, 在催化作用上表现出协同效应. 本文的理论研究对共掺杂方法在TiO2光催化领域有着一定的指导意义.  相似文献   

5.
乔皓  资剑  徐至中  张开明 《物理学报》1993,42(8):1317-1323
用经验的紧束缚方法对短周期的(Si)n/(Ge)m形变超晶格的电子态进行了计算。结果表明,由于布里渊区折迭的要求,只有当n+m=10时超晶格才可能产生直接能隙。对周期为n+m=10的超晶格,Γ,N,△处的导带谷间的相对位置对直接能隙的形成具有决定作用,而n的大小与衬底的组分对此有极大影响。(Si)6/(Ge)4和(Si)8/(Ge)2超晶格在Si1-xG 关键词:  相似文献   

6.
The electronic structure of silicon carbide with increasing germanium content have been examined using first principles calculations based on density functional theory. The structural stability is analysed between two different phases, namely, cubic zinc blende and hexagonal phases. The zinc blende structure is found to be the stable one for all the Si1-xGexC semiconducting carbides at normal pressure. Effect of substitution of Ge for Si in SiC on electronic and mechanical properties is studied. It is observed that cubic SiC is a semiconductor with the band gap value 1.243?eV. The band gap value of SiC is increased due to the substitution of Ge and the band gap values of Si 0.75 Ge 0.25 C, Si 0.50 Ge 0.50 C, Si 0.25 Ge 0.75 C and GeC are 1.322 eV, 1.413 eV, 1.574 eV and 1.657?eV respectively. As the pressure is increased, it is found that the energy gap gets decreased for Si1-x GexC (X?=?0, 0.25, 0.50, 0.75, 1). The elastic constants satisfy the Born – Huang elastic stability criteria. The bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio are also calculated and compared with the other available results.  相似文献   

7.
全宏俊  龚新高 《中国物理》2000,9(9):656-660
The electronic structures of the cluster-assembled solid Al12C(Si) are studied by the ab initio method. We find that Al12C(Si) can solidify into a van der Waals solid. The electronic band structures show very weak dispersion. The main features in the electronic structure of cluster are retained in the solid, and an energy gap up to about 1.5 eV is observed for Al12C and Al12Si solids.  相似文献   

8.
Taking into account the recent advances in the epitaxial growth of single-crystal InN leading to a drastic re-evaluation of its fundamental energy band gap, we have studied the electronic properties of InNxP1-x (x < 0.01) ternary alloy. Using the empirical pseudopotential method under the virtual crystal approximation, combined with the Harrison bond orbital model, the band gap at Γ, X and L points, the effective masses of the Γ valley and the electronic charge densities are calculated as a function of nitrogen composition. The fitted expressions of the energy band gaps indicate that the bowing parameter at Γ reached a broad value for very low nitrogen incorporation ( ). Furthermore, the band gap at Γ point decreases drastically with increasing nitrogen composition up to 1%. The elastic constants and the optical phonon frequencies are also reported. Our theoretical results provide a good agreement with the available data.  相似文献   

9.
We have conducted a first-principles study on the structural, electronic, optical and elastic properties of BeSiP2 and BeGeP2 chalcopyrite compounds. Using the density functional theory (DFT), implemented in both full potential linear muffin-tin orbital (FP-LMTO) and Vienna Ab initio simulation (VASP) packages. The FP-LMTO is used for the determination of the structural, electronic and optical properties, while the VASP is used to determine the elastic constants that give indications about the material stability. The obtained equilibrium structural parameters are in good agreement with available results. An investigation of the band gap indicates that our compounds possess a semiconductor behavior with direct band gap for BeSiP2 and with an indirect band gap for BeGeP2. The energy band gaps decreased by changing Be atoms from Si to Ge. We have calculated the dielectric function ε(ω). The obtained results show that these materials are promising semiconductors for photovoltaic applications. For the elastic properties, the single-crystal elastic constants Cij, shear anisotropic factors A, as well as polycrystalline bulk, shear and Young's modulus (B, G and E) and Poisson's ratio v have been predicted. The generalized elastic stability criteria for a tetragonal crystal are well satisfied, indicating that BeSiP2 and BeGeP2 are mechanically stable in the chalcopyrite structure.  相似文献   

10.
First-principles calculations have been used to investigate the structural, electronic and elastic properties of the filled skutterudite CeRu4P12, using the full-potential linear muffin-tin orbital (FP-LMTO) method. The exchange-correlation energy is described in the local spin density approximation (LSDA) using the Perdew–Wang parameterization. The results of the electronic properties show that this compound is an indirect band gap material. A special interest has been made to the determination of the elastic constants since there have been no available experimental and theoretical data. The energy band gaps and their volume and pressure dependence are investigated. Our results of the ground-state electronic properties are found to agree with experimental results.  相似文献   

11.
采用基于密度泛函理论的线性丸盒轨道原子球近似(LMTO-ASA)从头计算方法,研究了β-C3N4,β-Si3N4和β-Ge3N4的能带结构,得到了它们的能隙分别为:4.1751,5.1788和4.0279eV。对于β-C3N4,由于N的部分2p电子占据了非键轨道,禁带宽度较窄;对于β-Si3N4关键词:  相似文献   

12.
The electronic properties of RO2 (R=Si, Ge, Sn and Pb; a group IVA element) compounds in rutile structure have been calculated using WIEN2k implementation of full potential linearized augmented plane wave (FPLAPW) method. The exchange and correlation (XC) effects are taken into account by an orbital independent modified Becke Johnson (MBJ) potential as coupled with Local Density Approximation (LDA) for all the compounds except for PbO2 where only Generalized Gradient Approximation (GGA) is considered for the same. We predict a direct band gap in all these compounds with continuous decrease as the atomic size of IVA element increases such that there is an appearance of semimetallic band structure for the last compound, PbO2. The largest band gap (7.66 eV) has been found for SiO2, which governs its insulating nature. We observe that MBJLDA results for band gaps of these compounds are far better than those obtained using GGA and Engel-Vosko's GGA (EV-GGA). A very good agreement is observed between MBJLDA band gaps with corresponding experimental values as compared to other calculations. The electronic band structures are also analyzed in terms of contributions from various electrons.  相似文献   

13.
The electronic structures and optical properties of N-doped, S-doped and N/S co-doped SrTiO3 have been investigated on the basis of density functional theory (DFT) calculations. Through band structure calculation, the top of the valence band is made up of the O 2p states for the pure SrTiO3. When N and S atoms were introduced into SrTiO3 lattice at O site, the electronic structure analysis shows that the doping of N and S atoms could substantially lower the band gap of SrTiO3 by the presence of an impurity state of N 2p on the upper edge of the valence band and S 2p states hybrid with O 2p states, respectively. When the N/S co-doped, the energy gap has further narrowing compared with only N or S doped SrTiO3. The calculations of optical properties also indicate a high photo response for visible light for N/S co-doped SrTiO3. Besides, we find a new impurity state which separates from the O 2p states could improve the photocatalytic efficiency and we also propose a model for light electron-hole transportation which can explain the experiment results well. All these conclusions are in agreement with the recent experimental results.  相似文献   

14.
The structure and electronic properties of the WS2/SiC van der Waals (vdW) heterostructures under the influence of normal strain and an external electric field have been investigated by the ab initio method. Our results reveal that the compressive strain has much influence on the band gap of the vdW heterostructures and the band gap monotonically increases from 1.330 to 1.629 eV. The results also imply that electrons are likely to transfer from WS2 to SiC monolayer due to the deeper potential of SiC monolayer. Interestingly, by applying a vertical external electric field, the results present a parabola-like relationship between the band gap and the strength. As the E-field changes from to ?0.50 +0.20 V/Å, the band gap first increases from zero to a maximum of about 1.90 eV and then decreases to zero. The significant variations of band gap are owing to different states of W, S, Si, and C atoms in conduction band and valence band. The predicted electric field tunable band gap of the WS2/SiC vdW heterostructures is very promising for its potential use in nanodevices.  相似文献   

15.
四角晶相HfO2(001)表面原子和电子结构研究   总被引:1,自引:0,他引:1       下载免费PDF全文
卢红亮  徐敏  陈玮  任杰  丁士进  张卫 《物理学报》2006,55(3):1374-1378
采用基于第一性原理的密度泛函理论研究了四角晶相二氧化铪(t-HfO2)体相及 其(001)表面的原子几何与电子结构.理论计算结果表明,t-HfO2(001)表面不会 产生重构现象.与体相电子结构相比, t-HfO2(001)表面态密度明显高于体相态 密度.其次,表面原子的态密度更靠近费米能级(EF),价带往低能量处移动,并 有表面态产生.计算结果表明了t-HfO2表面禁带宽度明显低于体相的禁带宽度. t-HfO2(001)的表面态产生以及表面禁带宽度减小是由于Hf原子与O原子的配位 数减少,表面原子周围的环境发生变化而引起的. 关键词: 密度泛函理论 2(001)')" href="#">t-HfO2(001) 表面电子结构  相似文献   

16.
叶超  宁兆元  程珊华 《物理学报》2001,50(10):2017-2022
用紫外可见光透射光谱(UV-VIS)并结合键结构的X射线光电子能谱(XPS)和红外谱(FTIR)分析,研究了电子回旋共振等离子体增强化学气相沉积法制备的氟化非晶碳薄膜的光吸收和光学带隙性质.在微波功率为140—700W、源气体CHF3∶C6H6比例为1∶1—10∶1条件下沉积的薄膜,光学带隙在1.76—2.85eV之间.薄膜中氟的引入对吸收边和光学带隙产生较大的影响,吸收边随氟含量的提高而增大,光学带隙则主要取决于CF键的含量,是由于强电负 关键词: 氟化非晶碳薄膜 光吸收与光学带隙 电子回旋共振等离子体  相似文献   

17.
《Physics letters. A》2014,378(26-27):1841-1844
Using first-principles calculations, we have systematically studied the effects of the interplay between Si dopants in graphene. Four stable Si-pair doping configurations have been predicted and investigated. It is shown that the Si dopants tend to agglomerate in graphene. In particular, the band structures can be remarkably modulated by the doping sites of Si atoms in graphene. With the change of the Si–Si distance, the electronic structures can be widely tuned to exhibit isotropic, direction-dependent, and semiconducting properties. Based on this unique interplay effect, we reveal two ordered C–Si alloys, CSi and C3Si. It is found that CSi has an indirect band gap of 2.5 eV while C3Si still retains the Dirac features. Our results suggest that more remarkable electronic properties of graphene can be obtained by controllable tuning of the multi-doping of Si in graphene.  相似文献   

18.
Using first-principles calculations, a novel B12-based ternary compound, NaB6Si structure is proposed in this work. This structure is confirmed to be dynamically, thermodynamically, and mechanically stable at ambient pressure. The formation energy of NaB6Si is lower than that of experimentally synthesized Na8B74.5Si17.5. The Vickers hardness is calculated to be 30.2 GPa, indicating NaB6Si is a promising hard material. The band structure and density of states reveal that NaB6Si is a wide band gap semiconductor with a band gap approximately 2.88 eV. This study provides a fundamental understanding of the structural, mechanical, and electronic properties in NaB6Si.  相似文献   

19.
In this letter, the electronic structure properties of Nb, F monodoping and Nb-F codoping are explored by first-principles calculations. Our results show that Nb-F codoping can reduce the band gap notably. The band edge analysis indicates that both conduction band maximum (CBM) and valence band minimum (VBM) move to higher energies, which is desirable for water splitting. The formation energy and pair binding energy calculation shows that this anion-cation codoping is easy to realize in both O-rich and O-poor conditions. The calculated optical absorption spectra indicate that the visible light absorption can be significantly improved by Nb-F codoping in WO3. Therefore, Nb-F co-doped WO3 is predicted to be a promising visible light photocatalyst for water splitting.  相似文献   

20.
The crystal structure, electronic structure, optical properties and photocatalytic activity of the native defects in anatase TiO2 were investigated based on the density-functional theory (DFT). The results show that oxygen vacancies (VO) have the lowest formation energy, and thus are easiest to form in the bulk structure. The conduction and valence band moves to the high or low energy region, and the energy gap becomes narrower for the native point defect models. In particular, oxygen interstitials (Oi) have a direct band gap, and new gap states appear in the band gap, which can be responsible for the high photocatalytic efficiency in anatase TiO2. The phenomenon of “impurity compensation” takes place for the oxygen and titanium interstitials. Ti vacancy (VTi) can promote the utilization of solar light by analyzing the absorption spectra. All the calculated results show that Oi and VTi are beneficial in improving the photocatalytic activity of TiO2 in the UV–visible light range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号