首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
We have synthesized polycrystalline La0.95Nd0.05CrO3 sample by doping the La-site of LaCrO3 with Nd and its magnetic properties have been studied using DC magnetization and neutron diffraction techniques. DC magnetization study shows a paramagnetic to a weak ferromagnetic-like transition at ∼295 K followed by signatures of a spin reorientation phenomenon at 233 and 166 K and, finally a transition to an antiferromagnetic-like phase at ∼21 K. Low-temperature neutron diffraction measurements confirm a weak ferrimagnetic ordering of Cr3+ moments at all temperatures below 295 K.  相似文献   

2.
Present paper deals with the structural, magnetic and transport studies of as-deposited as well as annealed Co/GaAs(0 0 1) thin film at different temperatures. The X-ray diffraction measurements show oriented growth of as-deposited Co film in the hcp (0 0 2) direction. However, the sample annealed at higher temperatures shows formation of ternary Co2GaAs phase at the interface. Corresponding magnetic and transport measurements show decrement in magnetization and resistivity with annealing temperatures. The observed reductions in magnetization and resistivity values are mainly attributed to the formation of ternary Co2GaAs phase at the interface.  相似文献   

3.
The transformation of the spin structure of a high-spin Fe8 cluster in a strong magnetic field has been investigated. The magnetization and magnetic susceptibility of the material are calculated at different external magnetic fields and temperatures. It is shown that the magnetic field induces transformation of the spin structure of a Fe8 cluster from the quasi-ferrimagnetic structure with an average magnetic moment of 20 μB per molecule to the quasi-ferromagnetic structure with a magnetic moment of 40 μB. Unlike a similar transformation of a Néel ferrimagnet, which is continuous and occurs through an intermediate angular phase, this process in Fe8 at low temperatures manifests itself as a cascade of discrete quantum jumps, each being the transition accompanied by an increase in the spin number of the complex. At high temperatures, the behavior of the magnetic cluster approaches the cluster behavior described by the classical theory. The nature of quantum jumps is discussed in terms of the magnetic-field-induced energy level crossing in the ground state of a magnetic cluster. __________ Translated from Fizika Tverdogo Tela, Vol. 42, No. 6, 2000, pp. 1068–1072. Original Russian Text Copyright ? 2000 by Zvezdin, Plis, Popov.  相似文献   

4.
郭光华 《物理学报》2001,50(2):313-318
在10—800K的温度范围内用X射线衍射方法测量了DyMn2Ge2化合物的晶格常数与温度的变化关系,观察到高温时DyMn2Ge2由顺磁状态到反铁磁状态的自发磁相变伴随着晶格常数a的负的磁弹性异常现象.在4.2K—200K的温度范围内测量了DyMn2Ge2的交流磁化率.在交换相互作用的分子场模型近似下,从理论上分析讨论了DyMn2Ge2的低温自发磁相变和场诱导的磁相变.计算了DyMn2Ge2单晶的磁化强度与温度的变化关系以及不同温度下外磁场沿晶轴c方向时的磁化曲线.理论分析和计算结果表明,温度低于33K时在DyMn2Ge2中观察到的场诱导的一级磁相变为由亚铁磁状态(Fi)到中间态(IS)相变. 关键词: 稀土-过渡族金属间化合物 磁结构 磁相变  相似文献   

5.
通过X射线衍射和磁性测量等手段研究了Er2(Fe1-xCox)15Ga2化合物的结构与磁性,重点讨论了它们的磁晶各向异性.实验结果表明,Er2(Fe1-xCox)15Ga2化合物均为Th2Ni17型六角结构,晶格常数a,c和单胞体积V随Co含量的 关键词:  相似文献   

6.
Mössbauer studies reveal that there are two kinds of Fe3+ spins with completely different characteristics in Lu2Fe3O7: one is an Ising-like property and the other is a Heisenberg-like property in a two-dimensional antiferromagnet on a triangular lattice. The former spin orders ferrimagnetically along thec-axis at around 220 K. The latter spin is lying in thec-plane and a corresponding hyperfine magnetic field is observed at temperatures below 50 K. At very low temperatures, however, the latter spin has a component parallel to thec-axis and couples with the former spin. This finding is consistent with the modulated profile of the magnetic scattering in neutron diffraction and the result of a magnetization measurement.  相似文献   

7.
Neutron diffraction, X-ray diffraction and saturation magnetization measurements have been made on a series of ferromagnetic alloys at the composition Co2YZ, where Y is a group IVA or VA element and Z is a group IIIB or IVB element. The alloys are mainly ordered in the Heusler L21 type chemical structure, but some show the presence of a small amount of additional phase, or some preferential disorder.The magnetic results form two distinct groups in which the moments are confined to the Co sites but their magnitude depends on the electron concentration determined by the Y and Z atoms. Although the magnetic moments and Curie temperatures of the alloys in the same group are similar, their lattice parameters differ according to whether Z is a group IIIB or IVB element. Such behaviour indicates that, as in other alloy series with the Heusler structure, a change in lattice parameter has little effect on the magnetic properties in comparison with the effect of a change in electron concentration.  相似文献   

8.
MnV2O4 exhibits a paramagnetic to ferrimagnetic transition at 57 K and shows significant magnetic hysteresis below 55 K. By performing detailed powder X-ray diffraction at the same temperature during cooling and warming sequences, it is found that the magnetic hysteresis observed here is owing to strains induced by the structural phase separation. The intensity of the electron spin resonance spectra shows unusual temperature dependence, which might be related to the phase separation induced by the structural transition. By performing a mean field analysis, we obtained the exchange energies among the different magnetic moments and qualitatively understood the micromagnetic properties.  相似文献   

9.
《Current Applied Physics》2018,18(9):1001-1005
The effect of indium doping on structural and magnetic properties of Y-type hexaferrite Ba0.5Sr1.5Zn2(Fe1-xInx)12O22 (x = 0, 0.02, 0.04, 0.06, 0.08 and 0.1) prepared by the solid state reaction method was investigated. The Rietveld refinement method was used to analyze the X-ray diffraction patterns. The magnetic transition temperatures associated with the proper-screw spin phase to the collinear ferrimagnetic spin phase transition can be efficiently modulated by varying indium content. The magnetic transition temperature increases to a maximum with indium content x = 0.04 and then decreases with x, suggesting the possibility that electrically controlled magnetization reversal can be can be effectively tailored by varying indium content. The saturation magnetization at room temperature was decreased as increasing indium content, which can be explained as the metal ions occupation. It is worthy to note that the coercivity of In-doped samples was decreased drastically compared that of undoped sample, which is probably resulted from the reduction in anisotropy field with substitution of In3+ for Fe3+. The In-doped hexaferrite Ba0.5Sr1.5Zn2(Fe1-xInx)12O22 may be potential candidates for application in magnetoelectric devices.  相似文献   

10.
The structural and magnetic properties of ErMn2H4.6 have been studied by X-ray and neutron diffraction up to the pressures of 15 and 6 GPa, respectively. In the pressure range 0<P<3 GPa we observe a first-order phase transition to new high-pressure (HP) phase. The HP phase has the same hexagonal unit cell as the ambient-pressure phase but smaller lattice parameters (ΔV/V=−5%). The structural transition results in suppression of the long-range antiferromagnetic order. Our results suggest that pressure changes positions of the hydrogen atoms in the metal host. We speculate that the new arrangement of hydrogen atoms induces spin frustration and, therefore, suppresses long-range magnetic order in the HP phase.  相似文献   

11.
X-ray diffraction, Mössbauer spectroscopy and magnetization measurements were used as complementary methods to obtain structural data and to determine magnetic properties of the mechanically synthesized and subsequently thermally treated Co-Fe-Ni alloys. New, however approximate, phase diagrams were established on the basis of X-ray diffraction investigations. Mössbauer spectroscopy and magnetization measurements allowed to reveal practically linear correlation between the average values of the hyperfine magnetic field induction, 〈Bhf〉, and the effective magnetic moments, μeff, of the alloys. The decrease in 〈Bhf〉 with the number of electrons per atom, e/a, was observed. Moreover, the dependence of μeff on the valence 3d and 4s electrons per atom follows the Slater-Pauling curve. Thermal treatment of mechanosynthesized Co-Fe-Ni alloys led to some changes in the phase diagrams, increase in the grain size and decrease of the level of internal strains in alloys. Dependencies of lattice constants, average hyperfine magnetic fields, effective magnetic moments and Curie temperatures on the number of electrons per atom have the same trends for mechanically synthesized as well as for thermally treated alloys.  相似文献   

12.
The structural and magnetic properties of PrMn2−xCrxGe2 (0⩽x⩽1.0) were studied by X-ray diffraction and magnetization measurements. The powder samples crystallize in the ThCr2Si2-type structure, and the lattice constants at room temperature show almost no variation as Cr substitutes Mn. The observed phase transitions are summarized in a proposed magnetic xT phase diagram and compared with previous Moessbauer spectroscopy and neutron diffraction results for x=0.  相似文献   

13.
岳廷  何灏  张星  李广 《物理学报》2011,60(5):57501-057501
运用X射线衍射(XRD)分析技术,对钙钛矿型La0.55Ca0.45MnO3化合物的空间结构进行了变温测量,用Rietveld方法对XRD实验数据进行了精修拟合.随着温度的降低,实验上观测到衍射峰的劈裂,暗示该化合物内部晶体结构发生了相变.磁化曲线测量表明,对应晶体结构相变的温度,化合物的磁性也发生由铁磁性向反铁磁性的转变.运用Rietica软件对化合物的XRD数据进行了处理,得到了La0.55Ca0.45< 关键词: 锰氧化物 相变 电子密度分布 磁结构  相似文献   

14.
The effect of an external magnetic field with a strength up to 140 kOe on the phase transitions in manganese arsenide single crystals has been investigated. The existence of unstable magnetic and crystal structures at temperatures above the Curie temperature T C = 308 K has been established. The displacements of manganese and arsenic atoms during the magnetostructural phase transition and the shift in the temperature of the first-order magnetostructural phase transition in a magnetic field have been determined. It has been shown that the magnetocaloric effect in a magnetic field of 140 kOe near the Curie temperature T C is equal to ??T ?? 13 K. A model of the superparamagnetic state in MnAs above the temperature T C has been proposed using the data on the magnetic properties and structural transformation in the region of the first-order magnetostructural phase transition. It has been demonstrated that, at temperatures close to T C, apart from the contribution to the change in the entropy from the change in the magnetization there is a significant contribution from the transformation of the crystal lattice due to the magnetostructural phase transition.  相似文献   

15.
The structural and magnetic phase transformations that occur in the system of self-doped La1 ? y Pr y MnO3 + δ (δ ≈ 0.1, 0 ≤ y ≤ 1) manganites in the temperature range 4.2–300 K are studied by X-ray diffraction and measuring the temperature and field dependences of dc magnetization. The low-temperature magnetic phase transformations induced by the substitution of Pr for La correlate well with the structural phase transformations at T = 300 K, which indicates a strong coupling of the electronic and magnetic subsystems of La1 ? y Pr y MnO3 + δ manganites with the crystal lattice. The anomalies of the magnetic and structural properties detected in this work in the form of peaks and inflection points in the concentration dependences of the magnetization and lattice parameters of the pseudocubic phase of La1 ? y Pr y MnO3 + δ (0.1 ≤ y ≤ 0.7) in the temperature range 4.2–300 K are explained in terms of the existing concepts of the effect of Fermi surface nesting on the renormalization of the density of states and the hole dispersion near E F in the presence of a strong coupling of holes with low-frequency optical phonons, which results in their transformation into quasiparticles. The narrow peak in the magnetization curve M(y) of La1 ? y Pr y MnO3 + δ that is detected near y = 0.3 at T = 4.2 K is assumed to correspond to the peak of coherence of quasiparticles with a low energy of coupling with the crystal lattice near E F, which was found earlier in the photoelectron emission spectra of manganites. The disappearance of the narrow magnetization peak with increasing Pr concentration is explained by the transition of charge carriers from the mode of “light” holes weakly coupled to one of the soft phonons to the mode of “heavy” holes strongly coupled to several phonons. The transition between phases with strongly different effective quasiparticle masses proceeds jumpwise; that is, it has features of the metal-insulator Mott transition and is accompanied by the transition from 3D to 2D quasiparticle motion in planes ab.  相似文献   

16.
The magnetic behavior of the pseudo-binary system Fe2(Nb1-xMnx) is investigated by means of the experimental techniques of X-ray diffraction (XRD), Mössbauer Spectroscopy (MS) and magnetization studies. The XRD results indicate that, up to x=0.3, all samples are single phase with hcp structure. This corresponds to the solubility limit of manganese in this phase. Above x=0.3, all prepared samples present the coexistence of three phases, two with hcp structure and one fcc. The magnetization measurements at low temperatures indicate that the transition temperature increases with the addition of Mn atoms in the Fe2Nb host (TN=10 K) up to 58 K for x=0.1. The Mössbauer spectra were fitted with a quadrupole splitting distribution, which indicates that the average quadrupolar splitting increases slightly with the increase of the manganese concentration.  相似文献   

17.
The tight-binding linear muffin tin orbital (TB-LMTO) method within the local density approximation is used to calculate structural, electronic and magnetic properties of GdN under pressure. Both nonmagnetic (NM) and magnetic calculations are performed. The structural and magnetic stabilities are determined from the total energy calculations. The magnetic to ferromagnetic (FM) transition is not calculated. Magnetically, GdN is stable in the FM state, while its ambient structure is found to be stable in the NaCl-type (B1) structure. We predict NaCl-type to CsCl-type structure phase transition in GdN at a pressure of 30.4 GPa. In a complete spin of FM GdN the electronic band picture of one spin shows metallic, while the other spin shows its semiconducting behavior, resulting in half-metallic behavior at both ambient and high pressures. We have, therefore, calculated electronic band structures, equilibrium lattice constants, cohesive energies, bulk moduli and magnetic moments for GdN in the B1 and B2 phases. The magnetic moment, equilibrium lattice parameter and bulk modulus is calculated to be 6.99 μB, 4.935 Å and 192.13 GPa, respectively, which are in good agreement with the experimental results.  相似文献   

18.
Abstract

In this work, La0.75Ca0.25FeO3?δ perovskite sample was prepared by the coprecipitation method. The nanoparticle was found to crystallize in the orthorhombic (Pbnm) phase as confirmed by X-ray diffraction (XRD) and transmission electron microscopic (TEM). The oxygen non-stoichiometry (δ) and magnetic states of iron ions (three magnetic sextets and non-magnetic doublet) were investigated by Mössbauer spectroscopy at room temperature (RT). The shape of the magnetic hysteresis loop of the sample reveals the existence of a weak ferromagnetism at RT. The magnetization vs. temperature curves, measured in the 9 to 200 K range, showed that the sample exhibits two magnetic-phase transition temperatures at 29 K (Tg) and 120 K (TCO). The magnetization isotherms, M (H), around these magnetic-phase transition temperatures for the sample are analyzed.  相似文献   

19.
The structural, microstructural and magnetic properties of nanoferrite NiFe2O4 (NF), CoFe2O4 (CF) and MnFe2O4 (MF) thin films have been studied. The coating solution of these ferrite films was prepared by a chemical synthesis route called sol-gel combined metallo-organic decomposition method. The solution was coated on Si substrate by spin coating and annealed at 700 °C for 3 h. X-ray diffraction pattern has been used to analyze the phase structure and lattice parameters. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to show the nanostructural behavior of these ferrites. The values of average grain's size from SEM are 44, 60 and 74 nm, and from AFM are 46, 61 and 75 nm, respectively, measured for NF, CF and MF ferrites. At room temperature, the values of saturation magnetization, Ms∼50.60, 33.52 and 5.40 emu/cc, and remanent magnetization, Mr∼14.33, 15.50 and 1.10 emu/cc, respectively, are observed for NF, CF and MF. At low temperature measurements of 10 K, the anisotropy of ferromagnetism is observed in these ferrite films. The superparamagnetic/paramagnetic behavior is also confirmed by χ′(T) curves of AC susceptibility by applying DC magnetizing field of 3 Oe. The temperature dependent magnetization measurements show the magnetic phase transition temperature.  相似文献   

20.
The response of the magnetic and crystal structure of Gd5Si4 to both ‘isothermal’ and ‘thermo-mechanical’ process is investigated by the dispersion exchange fluctuation, which can be the cause of the compound's metastability. The X-ray diffraction DTA, SEM and magnetization at room temperature are measured to explore the effect of annealing process (latent heat as isothermal) at different annealing temperatures. The discharge heat (exchange heat) by the annealing process, which is manifested by the thermal loop of DTA, is caused by the reduction in the lattice constant as well as in magnetization behavior measured at room temperature with no observable crystal phase transition. The exchange fluctuation (entropy), which is related to the DTA thermal loop, is increased by the sample's heat absorption (discharge heat) in the direction to lower the free energy of the crystal. The crystallographic slip is investigated by the dissipative heat through the high ball milling energy (HBME) to provide the nature and strength of the exchange. It is shown that the DTA thermal loop and SEM-crystallographic slip should be the character of the “exchange heat” (discharge heat) and “heat exchange” (absorption of heat through the wet environment of ball milling).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号