首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Laser gas assisted melting of alumina surface is carried out and temperature as well as stress fields developed in the irradiated region are predicted using the finite element method (FEM). An experiment is conducted resembling the simulation conditions. Optical and scanning electron microscope (SEM) are used to examine the morphological and the metallurgical changes in the laser treated region. The X-ray diffraction (XRD) technique is used to determine the residual stress developed in the irradiated region. It is found that the residual stress predicted agreed with the measurement result. High heating and cooling rates result in high von Mises stress levels in the surface region.  相似文献   

2.
Laser carbonitriding of alumina surfaces is examined. Temperature and stress fields developed during the laser heating of the substrate surface are predicted using the finite element method in line with the experimental conditions. The formation of Al(C, N) and AlN compounds in the surface region of irradiated workpiece is examined using X-ray Photoelectron Spectroscopy (XPS) and X-ray Diffraction (XRD). The microstructural and morphological changes in the laser irradiated region are examined using Scanning Electron Microscope (SEM). The microhardness of the resulting surface is measured and compared with the base material hardness. It is found that high temperature gradient is developed in the irradiated region, which in turn, results in high residual stress levels in this region. XPS and XRD data reveal the presence of Al (C, N) and AlN compounds in the surface region. The microhardness in the surface region of the laser treated workpiece increases significantly.  相似文献   

3.
Laser controlled melting is one of the methods to achieve structural integrity in the surface region of the carbide tools. In the present study, laser heating of carbide cutting tool and temperature distribution in the irradiated region are examined. The phase change process during the heating is modeled using the enthalpy–porosity method. The influence of laser pulse intensity distribution across the irradiated surface (β) on temperature distribution and melt formation is investigated. An experiment is carried out and the microstructural changes due to laser consecutive pulse heating is examined using the scanning electron microscope (SEM). It is found that melt depth predicted agrees with the experimental results. The maximum depth of the melt layer moves away from the symmetry axis with increasing β.  相似文献   

4.
Laser heating of a cemented carbide tool is considered and the temperature field as well as phase changes in the heated region is modeled. Temperature rise, liquid layer thickness, and mushy size are predicted numerically. A control volume approach is introduced to solve the governing equations of heat transfer and phase change. Consecutive pulses with the duty cycle of 60% are accommodated in the simulations in line with the experimental conditions. An experiment is carried out to treat the cemented carbide tool surfaces using the CO2 laser delivering consecutive pulses. The treated surfaces and their cross-sections are examined using the scanning electron microscope (SEM). It is found that the temperature gradient is high along the laser beam axis resulting in cracks at the irradiated surface. The rapid solidification of the surface causes compact structures with very fine grains in the surface region of the laser irradiated spot.  相似文献   

5.
Analytical investigation into laser pulse heating and thermal stresses   总被引:1,自引:0,他引:1  
Laser pulse heating of metallic surfaces results in rapid rise of temperature in the region irradiated by the laser beam. This in turn results in high temperature gradient in this region. The irradiated substrate material expands as a response to the temperature gradient. Consequently, high thermal stress levels are developed in the region of the high temperature gradient. In the present study, closed form solutions for temperature and stress fields due to a laser pulse decaying exponentially in time are presented. A Laplace transformation method is employed in the analysis. The resulting equations are non-dimensionalized with the appropriate parameters. It is found that temperature rises rapidly during the early heating period in the surface region. In this case, internal energy gain dominates the conduction losses from the surface vicinity. The thermal stress levels attain high values in the surface region. The stress wave developed is compressive and it propagates with a wave speed c1 inside the substrate.  相似文献   

6.
Laser gas-assisted treatment of Ti-6Al-4V alloy surface is carried out. The alloy surface is initially coated by a carbon layer, in which the TiC particles are embedded prior to laser processing of the surface. The carbon coating with the presence of TiC particles on the workpiece surface is expected to result in carbonitride compound in the surface vicinity after the laser treatment process. Optical and scanning electron microscopes are used to examine the morphological and the metallurgical changes in the laser treated layer. The residual stress formed in the surface region after the laser treatment process is critical for the practical applications of the resulting surface. Therefore, the residual stress formed in the laser treated region is predicted from the analytically equation. The X-ray diffraction technique is incorporated to obtain the residual stress formed in the surface region. It is found that the residual stress predicted agrees with the X-ray diffraction data. The dense structures consisting of TiCxN1−x, TiNx, Ti2N, and TiC compounds are formed in the surface region of the treated layer. This, in turn, significantly increases the microhardness at the surface.  相似文献   

7.
Laser induced bending of steel sheet is carried out and thermal stress developed in the heated region is examined. Temperature and stress fields are predicted using the finite element model. The microstructural changes in the melted region are investigated through scanning electron microscope, energy dispersive spectroscopy and X-ray diffraction. The residual stress developed at the surface vicinity of the laser treated region is measured using the X-ray diffraction technique, which is then compared with its counterpart predicted from the simulations. It is found that the residual stress at the surface vicinity is compressive and the prediction of the residual stress agrees well with that obtained from the X-ray diffraction technique. In addition, surface temperature predictions are in good agreement with the thermocouple data. The laser treated region is free from major cracks and large cavities.  相似文献   

8.
Laser hole cutting in bronze is carried out and the thermal stress formed in the cutting section is examined using a finite element code. The cut geometry and microstructural changes in the cutting section are examined using optical microscope, scanning electron microscope (SEM), and energy dispersive spectroscopy (EDS). It is found that the high conductivity of bronze increases the cooling rates within the cutting section, which influences the thermal stress field in the cutting region. The residual stress predicted is in the order of 200 MPa within the vicinity of the hole circumference. The striation pattern at the kerf surface changes towards the hole exit, which is associated with the drag forces developed in this region.  相似文献   

9.
强流脉冲电子束辐照诱发金属纯镍中的空位簇缺陷   总被引:1,自引:0,他引:1       下载免费PDF全文
邹慧  荆洪阳  王志平  关庆丰 《物理学报》2010,59(9):6384-6389
利用强流脉冲电子束(high-current pulsed electron beam,HCPEB)技术对多晶纯Ni进行了辐照处理,采用透射电子显微镜详细分析了辐照诱发的缺陷结构.HCPEB辐照后,纯镍表层积聚了幅值极大的残余应力,沿{111}晶面形成了稠密的位错墙及孪晶结构,另外还形成了大量的包括位错圈、堆垛层错四面体(SFT)及孔洞在内的空位簇缺陷.SFT缺陷的数量远高于其他空位簇缺陷,其周围区域位错密度很低.孔洞缺陷主要出现在SFT密集区域.HCPEB瞬间的加热和冷却诱发的幅值极大的应力和极高的应变 关键词: 强流脉冲电子束 多晶纯Ni 空位簇缺陷 堆垛层错四面体  相似文献   

10.
Nonequilibrium energy transport between excited electrons and lattice site is re-formulated after considering the ballistic contribution of the electron energy to the energy transport process. The improved formulation of the electron kinetic theory predictions are compared with the previously obtained electron kinetic and two-equation models. Thermal stress developed in the region irradiated by a laser beam is formulated during the heating pulse. Copper with variable properties is used in the simulations. It is found that improved electron kinetic theory model predicts less temperature rise than that corresponding to previously formulated electron kinetic theory and two equation models in the surface region; in this case, electron temperature attains high values. Thermal stress developed is compressive and attains the maximum at some depth below the surface. The thermal stress level is well below the yielding limit of the substrate material.  相似文献   

11.
重复频率激光辐照涂层金属材料的温升   总被引:3,自引:0,他引:3       下载免费PDF全文
 测量了重复频率YAG激光辐照涂层金属材料(30CrMnSiA钢和LF6M铝金壳体)的前后表面温度, 分析了不同频率激光辐照涂层壳体材料的温升特性。实验结果表明:在相同平均功率的条件下, 激光脉冲频率越高, 对材料的加热效率越明显, 重复频率激光对材料的加热优于连续激光。  相似文献   

12.
Laser irradiation effects on surface, structural and mechanical properties of Al–Cu–Mg alloy (Al–Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al–Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.  相似文献   

13.
Incoloy alloy 800 HT is widely used material of construction for equipment that must resist corrosion. Moreover, the corrosion properties of the alloy reduce considerably when the alloy is heat treated. However, the short pulse laser treatment of the alloy may offer alternative technique to improve the corrosion properties of the alloy. In the present study, nano-second pulse heating of Incoloy 800 HT alloy is carried out using a Nd-YAG laser. The heating rate and the temperature rise during the laser treatment are predicted theoretically. Electrochemical techniques are applied to determine the corrosion rates of the laser treated and untreated Incoloy 800 HT samples. SEM and EDS are introduced for metallographic examination of the treated alloy surface. It is found that the fine dentritic structures occur at the surface after the laser treatment. The local pitting is observed for the laser melted and re-solidified regions while the scattering of the pits are resulted for the laser heated and unmelted regions. In addition, the corrosion rate reduces for the laser-treated samples.  相似文献   

14.
Fibre laser surface treatment (FLST) of a cold isostatic pressed (CIP) ZrO2 engineering ceramic (ZEC) was performed using various processing gas compositions. This is the first time that a surface treatment of ZEC has been employed hitherto by using the fibre laser (FL) radiation to observe the changes on and within the surface of the engineering ceramic; in particular, material removal, surface topography, chemical composition, changes in the surface hardness and distribution of the heat affected zone (HAZ). Bonding of the grain boundaries was found through surface melting with all FL irradiated samples to some extent, but the effect was more marked on the sample FL irradiated with an Ar assist gas and proved to be the most effective combination for modifying the surface morphology. The surface finish and the material removal were varied with the changes in the gas composition. Maximum material removal was observed when an O2 assist gas was employed on account of the O2 generating an exothermic reaction. This in turn, produced excessive heating. The compositional analysis revealed a chemical change occurring within the FL irradiated surfaces, regardless of the assist gas used, with the ZEC transforming to zirconia carbide (ZrC).  相似文献   

15.
Laser treatment of Inconel 718 alloy surface is carried out. The alloy surface is coated with a carbon layer containing 7% TiC particles prior to the laser treatment. The carbon coating provides increased absorption of the incident laser beam and holds TiC particles. The microstrutural and morphological changes in the laser treated region are examined using optical and scanning electron microscopes, energy dispersive spectroscopy, and X-ray diffraction. The microhardness of the surface is measured and the residual stress formed at the surface vicinity is determined from the XRD technique. It is found that partial dissolution of carbide particles takes place at the surface. The composition of fine grains at the surface vicinity, nitride compounds formed, and dissolution of Laves phase at the surface region enhances the hardness at the treated surface. In addition, laser treated surface is free from the micro-crack network and cavities.  相似文献   

16.
Laser treatment of cemented carbide tool surface consisting of W, C, TiC, TaC is examined and thermal stress developed due to temperature gradients in the laser treated region is predicted numerically. Temperature rise in the substrate material is computed numerically using the Fourier heating model. Experiment is carried out to treat the tool surfaces using a CO2 laser while SEM, XRD and EDS are carried out for morphological and structural characterization of the treated surface. Laser parameters were selected include the laser output power, duty cycle, assisting gas pressure, scanning speed, and nominal focus setting of the focusing lens. It is found that temperature gradient attains significantly high values below the surface particularly for titanium and tantalum carbides, which in turn, results in high thermal stress generation in this region. SEM examination of laser treated surface and its cross section reveals that crack initiation below the surface occurs and crack extends over the depth of the laser treated region.  相似文献   

17.
The cavity formation during laser pulse heating of steel, nickel, and tantalum is examined and evaporation rate from the cavity surface is predicted. The mushy zones generated across the vapor–liquid and liquid–solid phases are modeled using the energy method. Temperature-dependent thermal properties are accommodated in the analysis and the laser pulse shape resembling the actual laser pulse is employed in the simulations. A numerical scheme using the control volume method is used to predict the cavity size, recession velocity of the vapor front, and temperature field in the laser irradiated region. It is found that cavity depth for steel is the largest, then follows nickel and tantalum. The recession velocity of the vapor front is high for steel due to the low evaporation temperature and latent heat of evaporation of steel.  相似文献   

18.
The heating of solid surfaces using consecutive laser pulses is studied and the temperature field inside slabs with different thermal properties is predicted. A Gaussian beam intensity distribution is assumed at the irradiated surface and axisymmetric heating situation is accommodated in the numerical simulations. The materials selected include titanium, stainless steel, tantalum, nickel, and aluminum. A control volume approach is introduced to discretize the governing equation of heat transfer. It is found that temperature rise in the early heating period is higher than that in the later heating period. The temperature difference between two consecutive pulses is higher in the heating cycle than that corresponding to the cooling cycle of the consecutive pulses.  相似文献   

19.
 利用强流脉冲电子束(HCPEB)装置对多晶纯镍进行轰击,采用X射线衍射及扫描电子显微镜等技术,详细分析了受轰击样品的变形组织与结构。通过分析建立了强流脉冲电子束诱发的应力特征与变形结构之间的关系,并对目前现有的几种应力波数值模拟结果进行了讨论。实验结果表明:强流脉冲电子束能够在材料表层诱发约5GPa的应力,造成纯镍表面发生孪生塑性变形。除了热膨胀引起的表层横向准静态热应力外,强流脉冲电子束产生的等离子体脉冲爆炸可以直接诱发幅值很高的冲击应力波,二者的共同作用是引起表层微观结构变化的直接原因。  相似文献   

20.
Laser-induced thermal stresses on steel surface   总被引:1,自引:0,他引:1  
In laser heat treatment of steels, a thin surface layer of austenite forms during heating and subsequent phase change process in the cooling period. However, thermal stress develops due to high-temperature gradient attainment in the surface vicinity which in turn results in microcrack development at the surface. The present study is carried out to compute the temperature profiles due to step input pulse laser radiation and determine the resulting thermal stresses. The study is extended to include three-step input pulses having the same energy content. This provides the comparison for the influence of the pulse length on the resulting thermal stresses. To validate the theoretical predictions, an experiment is conducted to irradiate the AISI 4142 steel surface by an Nd–YAG laser. Microphotography and EDS analysis of the heated regions are carried out. It is found that considerable thermal stress is eveloped at the workpiece surface due to attainment of high-temperature gradient in this region. In addition, microcracks are observed at the surface of the irradiated spot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号