首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Laser scribing process has been considered as an effective approach for surface texturization on thin film solar cell. In this study, a systematic method for optimizing multi-objective process parameters of fiber laser system was proposed to achieve excellent quality characteristics, such as the minimum scribing line width, the flattest trough bottom, and the least processing edge surface bumps for increasing incident light absorption of thin film solar cell. First, the Taguchi method (TM) obtained useful statistical information through the orthogonal array with relatively fewer experiments. However, TM is only appropriate to optimize single-objective problems and has to rely on engineering judgment for solving multi-objective problems that can cause uncertainty to some degree. The back-propagation neural network (BPNN) and data envelopment analysis (DEA) were utilized to estimate the incomplete data and derive the optimal process parameters of laser scribing system. In addition, analysis of variance (ANOVA) method was also applied to identify the significant factors which have the greatest effects on the quality of scribing process; in other words, by putting more emphasis on these controllable and profound factors, the quality characteristics of the scribed thin film could be effectively enhanced. The experiments were carried out on ZnO:Al (AZO) transparent conductive thin film with a thickness of 500 nm and the results proved that the proposed approach yields better anticipated improvements than that of the TM which is only superior in improving one quality while sacrificing the other qualities. The results of confirmation experiments have showed the reliability of the proposed method.  相似文献   

2.
《Current Applied Physics》2010,10(4):1203-1210
A mechano-chemical atomic force microscope (AFM) nanolithography on a metallic thin film (50 nm in thickness) covered by a spin-coated soft polymeric mask layer (50–60 nm in thickness) has been introduced. The surface stochastic properties of initial grooves mechanically patterned on the mask layer (grooves before chemical wet-etching) and the lithographed patterns on the metallic thin film (the grooves after chemical wet-etching) have been investigated and compared by using the structure factor, power spectral density, and AFM tip deconvolution analyses. The effective shape of cross section of the before and after etching grooves have been determined by using the tip deconvolution surface analysis. The wet-etching process improved the shape of the grooves and also smoothed the surface within them. We have indicated that relaxation of the surface tension of the deposited mask layer after the AFM scribing is independent from surface density of the grooves and also their length scale. Based on the statistical analysis, it was found that increase of the width of the grooves after the wet-etching and also relaxation of surface tension of the mask layer resulted in a down limit in the size of the metallic nanowires made by the combined nanolithography method. An extrapolation of the analyzed statistical data has indicated that, in this method, the minimum obtainable width and length of the metallic nanowires are about 55 nm and 2 μm, respectively.  相似文献   

3.
Micro- and nano-scale crystalline indium-tin-oxide (c-ITO) patterns fabricated from amorphous ITO (a-ITO) thin films on a glass substrate using a (low NA 0.26) femtosecond laser pulse that is not tightly focused are demonstrated. Different types of c-ITO patterns are obtained by controlling the laser pulse energies and pulse repetition rate of a femtosecond laser beam at a wavelength of 1064 nm: periodic micro c-ITO dots with diameters of ~1.4 μm, two parallel c-ITO patterns with/without periodic-like glass nanostructures at a laser scanning path and nano-scale c-ITO line patterns with a line width ~900 nm, i.e. ~1/8 of the focused beam׳s diameter (7 μm at 1/e2).  相似文献   

4.
Vanadium dioxide has excellent phase transition characteristic. Before or after phase transition, its optical, electrical, magnetic characteristic hangs hugely. It has a wide application prospect in many areas. Now, the light which can make vanadium dioxide come to pass photoinduced phase transition range from soft X-ray to medium infrared light (6.9 μm, 180 meV). However, whether 10.6 μm (117 meV) long wave infrared light can make vanadium dioxide generate photoinduced phase transition has been not studied. In this paper, we researched the response characteristic of vanadium dioxide excited by 10.6 μm infrared light. We prepared the vanadium dioxide and test the changes of vanadium dioxide thin film’s transmittance to 632.8 nm infrared light when the thin film is irradiate by CO2 laser. We also test the resistivity of vanadium dioxide. Excluding the effect of thermal induced phase transition, we find that the transmittance of vanadium dioxide thin film to 632.8 nm light and resistivity both changes when irradiating by 10.6 μm laser. This indicates that 10.6 μm infrared light can make the vanadium dioxide come to pass photoinduced phase transition. The finding makes vanadium has a potential application in recording the long-wave infrared hologram and making infrared detector with high resolution.  相似文献   

5.
This paper demonstrates the use of a zinc oxide (ZnO) thin film in a 1-μm ring laser cavity as a saturable absorber to successfully generate Q-switching pulses. The tunability of the laser pulses is achieved by integrating a tunable bandpass filter (TBPF) in an ytterbium-doped laser cavity that results in 9.4 nm of tuning range, which wavelength is from 1040.70 nm to 1050.1 nm. The peak energy in the pulse which is 1.47 nJ was measured together with a minimum pulse width of 2.4 μs. In addition, the repetition rate increases from 25.77 to 45.94 kHz as the pump power level being increased from 103.1 to 175.1 mW. The results obtained in this experiment demonstrated consistent results and stable throughout the experiment. Therefore, ZnO thin film is considered as a good candidate in 1-μm pulsed laser applications.  相似文献   

6.
β-NaYF4:Er3+(10%) microprisms, synthesized using a hydrothermal method, were applied to the back of a thin film hydrogenated amorphous silicon (a-Si:H) solar cells to investigate response to sub-band gap near-infrared irradiation. Currents of 0.3 μA and 0.01 μA were measured during single-illumination with 60 mW (80 mW/cm2) 980 nm and 1560 nm diode lasers, respectively, due to frequency upconversion (UC). Under co-excitation by 60 mW 980 nm and 100 mW 1560 nm lasers, a current improvement to 0.54 μA was obtained, resulting from enhancements in red emission. The finding indicates that co-excitation with multiple wavelengths accessible to UC materials is very effective in enhancing the efficiency of solar cells.  相似文献   

7.
The W film was prepared on 1045 steel by magnetron sputtering, with the thickness of 2 μm, its surface and cross-section morphologies were investigated with SEM, and the phase structure was analyzed with XRD. X-ray stress determinator was utilized to measure its residual stress, and the nano-hardness and elastic modulus of the film were surveyed by nano-indentation tester. The results show that the surface of W film is very compact and smooth; the particles arranged regularly, the granularity of the thin film is about 1 μm. The microcracks, cavities and desquamation were not found in the film and interface, and the bonding between the W film and substrate is well. The XRD results showed that the W film had a body-centered cubic structure, the lattice constant: a = 0.316 nm, the growth preferred orientations are (1 1 0) and (2 2 0). The compressive stress (−169 MPa) was found on the surface. The average nano-hardness and elastic modulus of W film are 15.22 GPa, 176.64 GPa, respectively, and the mechanical properties of W film are well.  相似文献   

8.
In this work a waveguide-integrated 2 × 2 switch operating at the infrared communication wavelength of 1550 nm is proposed and theoretically discussed. The device is based on the total internal reflection (TIR) phenomenon and the thermo-optic effect (TOE) in hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). It takes advantage of a bandgap-engineered a-Si:H layer to explore the properties of an optical interface between materials showing similar refractive indexes but different thermo-optic coefficients. In particular, thanks to modern plasma-enhanced chemical vapour deposition (PECVD) techniques, the refractive index of the amorphous film can be properly tailored to match that of c-Si at a given temperature. TIR may be therefore achieved at the interface by acting on the temperature. The device is integrated in a 4 μm-wide and 3 μm-thick single-mode rib waveguide. The substrate is a silicon-on-insulator (SOI) wafer with an oxide thickness of 500 nm. We calculated an output crosstalk always better than 24 dB and insertion losses as low as 3.5 dB.  相似文献   

9.
We investigate the feasibility of cutting and drilling thin flex glass (TFG) substrates using a picosecond laser operating at wavelengths of 1030 nm, 515 nm and 343 nm. 50 μm and 100 μm thick AF32®Eco Thin Glass (Schott AG) sheets are used. The laser processing parameters such as the wavelength, pulse energy, pulse repetition frequency, scan speed and the number of laser passes which are necessary to perform through a cut or to drill a borehole in the TFG substrate are studied in detail. Our results show that the highest effective cutting speeds (220 mm/s for a 50 μm thick TFG substrate and 74 mm/s for a 100 μm thick TFG substrate) are obtained with the 1030 nm wavelength, whereas the 343 nm wavelength provides the best quality cuts. The 515 nm wavelength, meanwhile, can be used to provide relatively good laser cut quality with heat affected zones (HAZ) of <25 μm for 50 μm TFG and <40 μm for 100 μm TFG with cutting speeds of 100 mm/s and 28.5 mm/s, respectively. The 343 nm and 515 nm wavelengths can also be used for drilling micro-holes (with inlet diameters of ⩽75 µm) in the 100 μm TFG substrate with speeds of up to 2 holes per second (using 343 nm) and 8 holes per second (using 515 nm). Optical microscope and SEM images of the cuts and micro-holes are presented.  相似文献   

10.
Thin films of tungsten phosphate glasses were deposited on a Pd substrate by a pulsed laser deposition method and the flux of hydrogen passed thorough the glass film was measured with a conventional gas permeation technique in the temperature range 300–500 °C. The glass film deposited at low oxygen pressure was inappropriate for hydrogen permeation because of reduction of W ions due to oxygen deficiency. The membrane used in the hydrogen permeation experiment was a 3-layered membrane and consisted of Pd film (~ 20 nm), the glass film (≤ 300 nm) and the Pd substrate (250 µm). When the pressure difference of hydrogen and thickness of the glass layer were respectively 0.2 MPa and ~ 100 nm, the permeation rate through the membrane was 2.0 × 10? 6 mol cm? 2 s? 1 at 500 °C. It was confirmed that the protonic and electronic mixed conducting glass thin film show high hydrogen permeation rate.  相似文献   

11.
High quality transparent conductive oxides (TCOs) often require a high thermal budget fabrication process. In this study, Excimer Laser Annealing (ELA) at a wavelength of 248 nm has been explored as a processing mechanism to facilitate low thermal budget fabrication of high quality aluminium doped zinc oxide (AZO) thin films. 180 nm thick AZO films were prepared by radio frequency magnetron sputtering at room temperature on fused silica substrates. The effects of the applied RF power and the sputtering pressure on the outcome of ELA at different laser energy densities and number of pulses have been investigated. AZO films deposited with no intentional heating at 180 W, and at 2 mTorr of 0.2% oxygen in argon were selected as the optimum as-deposited films in this work, with a resistivity of 1×10−3 Ω.cm, and an average visible transmission of 85%. ELA was found to result in noticeably reduced resistivity of 5×10−4 Ω.cm, and enhancing the average visible transmission to 90% when AZO is processed with 5 pulses at 125 mJ/cm2. Therefore, the combination of RF magnetron sputtering and ELA, both low thermal budget and scalable techniques, can provide a viable fabrication route of high quality AZO films for use as transparent electrodes.  相似文献   

12.
Xi Bao  Feng Liu  Xiaoli Zhou 《Optik》2012,123(16):1474-1477
Prototype devices based on black silicon have been fabricated by microstructuring 250 μm thick multicrystalline n doped silicon wafers using femtosecond pulsed laser in ambient gas of SF6 to measure its photovoltaic properties. The enhanced optical absorption of black silicon extends across the visible region and all the black silicons prepared in this work exhibit enhanced optical absorption close to 90% from 300 nm to 800 nm. The highest open-circuit voltage (Voc) and short-circuit current (Isc) under the illumination of He–Ne continuous laser at 632.8 nm were measured to be 53.3 mV and 0.11 mA, respectively at a maximum power conversion efficiency of 1.44%. Upon excitation with He–Ne continuous laser at 632.8 nm, external quantum efficiency (EQE) of black silicon as high as 112.9% has also been observed. Development of black silicon for photovoltaic purposes could open up a new perspective in achieving high efficient silicon-based solar cell by means of the enhanced optical absorption in the visible region. The current–voltage characteristic and photo responsivity of these prototype devices fabricated with microstructured silicon were also investigated.  相似文献   

13.
A line tunable singly resonant noncritically phase matched narrow band width ZnGeP2 (ZGP) optical parametric oscillator pumped by the output idler radiation from a KTA OPO based on a 20 mm long KTA crystal pumped from a Q-switched Gaussian shaped Nd:YAG laser beam with a grating having grooves density 85 lines/mm has been demonstrated in the spectral ranges of 3–7 μm. The measured threshold of oscillation energy was 10 μJ. The conversion efficiency was 20.5% and slope efficiency of the ZGP OPO was 20% using a 23 mm long ZGP crystal at 26 mm cavity length. Line width of the generated infrared radiation from ZGP OPO was 37–60 nm.  相似文献   

14.
Nanostructured zinc suplhide thin films are successfully deposited on quartz substrates using pulsed laser deposition (PLD) under different argon pressures (0, 5, 10, 15 and 20 Pa). The influence of argon ambience on the microstructural, optical and luminescence properties of zinc sulfide (ZnS) thin films is systematically investigated. The GIXRD data suggests rhombohedral structure for ZnS films prepared under different argon ambience. Self-assembly of grains into well-defined patterns along the y direction is observed in the AFM image of the film deposited under argon pressure 20 Pa. All the films show a blue shift in optical band gap. This can be due to the quantum confinement effect and less widening of conduction and valence band for the films with less thickness and smaller grain size. The PL spectra of the different films are recorded at excitation wavelengths 250 nm and 325 nm and the spectra are interpreted. The PL spectra of the films recorded at excitation wavelength 325 nm show intense yellow emission. The film deposited under an argon pressure of 15 Pa shows the highest PL intensity for excitation wavelength 325 nm. For the PL spectra (excitation at 250 nm), the highest PL intensity is observed for the film prepared under argon free ambience. In our study, 15 Pa is the optimum argon pressure for better crystallinity and intense yellow emission when excited at 325 nm.  相似文献   

15.
Femtosecond lasers together with high resolution optics have given us the ability to achieve submicron ablation spots which can play an important role in specific micromachining applications. Light emitted from the plasma at the sample surface created by a focused femtosecond laser pulse can also be used in laser induced breakdown spectroscopy (LIBS) and allows us to characterize the chemical composition of the target surface with micron-level lateral resolution. The spatial resolution using LIBS has often been defined by measuring the FWHM of the crater size. In this report, we study the application of femtosecond 266 nm laser pulses with very low energies of 10׳s of nanojoules. We have investigated spatial resolution using the detection of thin strips of chromium on silicon substrates and compared the actual width of the chromium versus the experimentally obtained width using LIBS detection. The variation of signal levels for low pulse energies is investigated on chromium surfaces. A spatial resolution of ~1 μm was obtained for detection of chromium from the emission.  相似文献   

16.
We developed a very sensitive high-frequency carrier-type thin film sensor with a sub-pT resolution using a transmission line. The sensor element consists of Cu conductor with a meander pattern (20 mm in length, 0.8 mm in width, and 18 μm in thickness), a ground plane, and amorphous CoNbZr film (4 μm in thickness). The amplitude modulation technique was employed to enhance the magnetic field resolution for measurement of the high-frequency field (499 kHz), a resolution of 7.10×10?13 T/Hz1/2 being achieved, when we applied an AC magnetic field at 499 kHz. The phase detection technique was applied for measurement of the low frequency field (around 1 Hz). A small phase change was detected using a dual mixer time difference method. A high phase change of 130°/Oe was observed. A magnetic field resolution of 1.35×10?12 T/Hz1/2 was obtained when a small AC field at 1 Hz was applied. We applied the sensor for magnetocardiogram (MCG) measurement using the phase detection technique. We succeeded in measuring the MCG signal including typical QRS and T waves, and compared the MCG with a simultaneously obtained conventional electrocardiogram (ECG) signal.  相似文献   

17.
Microbolometers are extensively used for uncooled infrared imaging applications. These imaging units generally employ vanadium oxide or amorphous silicon as the active layer and silicon nitride as the absorber layer. However, using different materials for active and absorber layers increases the fabrication and integration complexity of the pixel structure. In order to reduce fabrication steps and therefore increase the yield and reduce the cost of the imaging arrays, a single layer can be employed both as the absorber and the active material. In this paper, we propose an all-ZnO microbolometer, where atomic layer deposition grown zinc oxide is employed both as the absorber and the active material. Optical constants of ZnO are measured and fed into finite-difference-time-domain simulations where absorption performances of microbolometers with different gap size and ZnO film thicknesses are extracted. Using the results of these optical simulations, thermal simulations are conducted using finite-element-method in order to extract the noise equivalent temperature difference (NETD) and thermal time constant values of several bolometer structures with different gap sizes, arm and film thicknesses. It is shown that the maximum performance of 171 mK can be achieved with a body thickness of 1.1 μm and arm thickness of 50 nm, while the fastest response with a time constant of 0.32 ms can be achieved with a ZnO thickness of 150 nm both in arms and body.  相似文献   

18.
The effect of the input electrical power on the spectral width of the 510.6 nm line of an atomic copper vapor laser (CVL) is investigated. An analysis of the gas temperature inside the discharge tube and the line broadening mechanism of the CVL is reported. The input electrical power was varied from 2.0 to 4.2 kW in a cylindrical discharge tube of inner radius 2.35 cm and length 150.0 cm. A Fabry–Perot etalon and imaging camera-based setup interfaced with personal computer was used to measure the spectral width of the 510.6 nm (green) laser line. The Doppler broadened spectral profile of the laser emission varies with input electrical power and an additional broadening of almost 1 GHz at the highest operating input power was observed.  相似文献   

19.
Silicon microspheres are transparent in the near-infrared telecommunication bands and can be used for electrophotonic integration. We have experimentally observed blue shifts in resonance wavelengths of an electrically driven silicon microsphere of 500 μm in radius, in the near-infrared. We have used a distributed feed back (DFB) laser operating at 1475 nm, and applied electrical potential differences up to 9 V to the silicon microsphere. We have observed blue shifts in the resonance wavelengths up to 0.05 nm, which corresponds to a change in the refractive index of 10−4.  相似文献   

20.
Laser cutting characteristics including power level and cutting gas pressure are investigated in order to obtain an optimum kerf width. The kerf width is investigated for a laser power range of 50–170 W and a gas pressure of 1–6 bar for steel and mild steel materials. Variation of sample thickness, material type, gas pressure and laser power on the average cut width and slot quality are investigated. Optimum conditions for the steel and mild steel materials with a thickness range of 1–2 mm are obtained. The optimum condition for the steel cutting results in a minimum average kerf width of 0.2 mm at a laser power of 67 W, cutting rate of 7.1 mm/s and an oxygen pressure of 4 bar. A similar investigation for the mild steel cutting results in a minimum average kerf width of 0.3 mm at the same laser power of 67 W, cutting rate of 9.5 mm/s, and an oxygen pressure of 1 bar. The experimental average kerf is about 0.3 mm, which is approximately equal to the estimated focused beam diameter of 0.27 mm for our focusing lens (f=4 cm and 100 W power). This beam size leads to a laser intensity of about 1.74×109 W/m2 at the workpiece surface. The estimated cutting rate from theoretical calculation is about 8.07 mm/s (1.0 mm thickness and 100 W power), which agrees with the experimental results that is 7.1 mm/s for 1.0 mm thickness of mild steel at the laser power of 88 W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号