首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using the single-crystal adsorption calorimeter (SCAC), coverage-dependent heats of adsorption and sticking probabilities are reported for O2 and NO on Pt{1 1 1}, Pt{2 1 1} and Pt{4 1 1} at 300 K. At low coverage, oxygen adsorption is dissociative for all Pt surfaces. The highest initial heat of adsorption is found on Pt{2 1 1}, with a value of 370 kJ/mol, followed by those on Pt{4 1 1} (310 kJ/mol) and Pt{1 1 1} (300 kJ/mol). We attribute this relatively large difference in the dissociative heat of adsorption at low coverage to the step character of the {2 1 1} surface. Initial sticking probabilities, so, are similar for the three surfaces, 0.22 on Pt{1 1 1}, 0.17 on Pt{2 1 1} and 0.18 on Pt{4 1 1}, rapidly decreasing as the oxygen coverage increases. For nitric oxide, the initial heats of adsorption are very similar and consistent with either dissociative or molecular adsorption, with values of 182 kJ/mol on Pt{1 1 1}, 192 kJ/mol on Pt{2 1 1} and 217 kJ/mol on Pt{4 1 1}. The so value is virtually identical for all three systems, with values ranging from 0.82 to 0.85, suggesting that the initial sticking probability is insensitive to the surface structure and adsorption is intrinsically precursor mediated. SCAC data are also used to evaluate pre-exponential factors, ν, for first-order desorption at high coverage where adsorption is non-dissociative. Values of 3 × 1018, 6 × 1018 and 2 × 1018 s?1 for O2, and 4 × 1019, 6 × 1017 and 2 × 1020 s?1 for NO on Pt{1 1 1}, Pt{2 1 1} and Pt{4 1 1}, respectively, are found. These unexpectedly high values are rationalised in terms of conventional transition state theory entropy changes.  相似文献   

2.
C. Rohmann  J.B. Metson  H. Idriss 《Surface science》2011,605(17-18):1694-1703
The adsorption of CO on α-Al2O3(0001) was studied using the DFT-GGA computational method and on α-Al2O3 powder experimentally by Infra red spectroscopy. The core and valence level regions of α-Al2O3(0001) single crystal surface were also studied experimentally. Ar ions sputtering of the surface results in a slight but reproducible decrease in the XPS O2p lines in the valence band regions due to preferential removal of surface (and near surface) O atoms. Core level XPS O1s and Al2p further confirmed oxygen depletion with an associated surface stoichiometry close to Al2O2.9. The adsorption energy of CO was computed and found equal to 0.52 eV for θ = 0.25, it decreased to 0.42 eV at θ = 1. The IR frequency of νCO was also computed and in all cases it was blue shifted with respect to gas phase CO. The shift, Δν, decreased with increasing coverage where it was found equal to 56 cm? 1 for θ = 0.25 and decreased to 30 cm? 1 for θ = 1. Structural analyses indicated that the change in the adsorption energy and the associated frequency shift is due to surface relaxation upon adsorption. Experimentally the adsorption of CO gave rise to one main IR peak at 2154 cm? 1 at 0.3 Torr and above. Two far smaller peaks are also seen at lower pressures of 0.03–0.2 Torr at 2189 and 2178 cm? 1. The isosteric heat of adsorption was computed for the IR band at 2154 cm? 1 and was found equal to 0.2 eV which did not change with coverage in the investigated range up to θ = 0.6.  相似文献   

3.
The adsorption of carbon monoxide on Pt(111) was studied using polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) spectroscopy. Two CO on-top signals at 2110 cm? 1 and 2097 cm? 1 have been detected under continuous CO exposure in a pressure range from 10? 7 to 100 mbar and at temperatures between 200 K and 300 K. The formation of the higher wavenumber signal is found to be kinetically limited below 200 K and by the presence of a stable c(4 × 2) adlayer in UHV. On the basis of the results presented in this study and previous experimental findings the two on-top signals are related to different CO compression layers on Pt(111) with θ > 0.5, hexagonal Moiré lattices and rectangular coincident site lattices.  相似文献   

4.
Low-temperature (25 K) adsorption states and the site conversion of adsorbed CO between the ontop and the hollow sites on Ni(111) were studied by means of temperature programmed desorption and infrared reflection absorption spectroscopy. The activation energy and pre-exponential factor of desorption were estimated to be 1.2 eV and 2.6 × 1013 s? 1, respectively, in the limit of zero coverage. At low coverage, CO molecules preferentially adsorbed at the hollow sites below 100 K. With increasing temperature, the ontop sites were also occupied. Using a van't Hoff plot, the enthalpy and the entropy differences between the hollow and ontop CO were estimated to be 36 meV and 0.043 meV K? 1, respectively, and the vibrational entropy difference was estimated to be 0.085 meV K? 1. The positive entropy difference was the result of the low-energy frustrated translational mode of the ontop CO, which was estimated to be 4.6 ± 0.3 meV. With the harmonic approximation, the upper limit of the activation energy of site hopping from ontop sites to hollow sites was estimated to be 61 meV. In addition, it was suggested that the activation energy of hollow-to-hollow site hopping via a bridge site was less than 37 meV.  相似文献   

5.
The adsorption/decomposition kinetics/dynamics of thiophene has been studied on silica-supported Mo and MoSx clusters. Two-dimensional cluster formation at small Mo exposures and three-dimensional cluster growth at larger exposures would be consistent with the Auger electron spectroscopy (AES) data. Thermal desorption spectroscopy (TDS) indicates two reaction pathways. H4C4S desorbs molecularly at 190–400 K. Two TDS features were evident and could be assigned to molecularly on Mo sites, and S sites adsorbed thiophene. Assuming a standard preexponential factor (ν = 1 × 1013/s) for first-order kinetics, the binding energies for adsorption on Mo (sulfur) sites amount to 90 (65) kJ/mol for 0.4 ML Mo exposure and 76 (63) kJ/mol for 2 ML Mo. Thus, smaller clusters are more reactive than larger clusters for molecular adsorption of H4C4S. The second reaction pathway, the decomposition of thiophene, starts at 250 K. Utilizing multimass TDS, H2, H2S, and mostly alkynes are detected in the gas phase as decomposition products. H4C4S bond activation results in partially sulfided Mo clusters as well as S and C residuals on the surface. S and C poison the catalyst. As a result, with an increasing number of H4C4S adsorption/desorption cycles, the uptake of molecular thiophene decreases as well as the H2 and H2S production ceases. Thus, silica-supported sulfided Mo clusters are less reactive than metallic clusters. The poisoned catalyst can be partially reactivated by annealing in O2. However, Mo oxides also appear to form, which passivate the catalyst further. On the other hand, while annealing a used catalyst in H/H2, it is poisoned even more (i.e., the S AES signal increases). By means of adsorption transients, the initial adsorption probability, S0, of C4H4S has been determined. At thermal impact energies (Ei = 0.04 eV), S0 for molecular adsorption amounts to 0.43 ± 0.03 for a surface temperature of 200 K. S0 increases with Mo cluster size, obeying the capture zone model. The temperature dependence of S0(Ts) consists of two regions consistent with molecular adsorption of thiophene at low temperatures and its decomposition above 250 K. Fitting S0(Ts) curves allows one to determine the bond activation energy for the first elementary decomposition step of C4H4S, which amounts to (79 ± 2) kJ/mol and (52 ± 4) kJ/mol for small and large Mo clusters, respectively. Thus, larger clusters are more active for decomposing C4H4S than are smaller clusters.  相似文献   

6.
CO adsorption on clean and oxidized Pt3Ti(111) surfaces has been investigated by means of Auger Electron Spectroscopy (AES), Thermal Desorption Spectroscopy (TDS), Low Energy Electron Diffraction (LEED) and High Resolution Electron Energy Loss Spectroscopy (HREELS). On clean Pt3Ti(111) the LEED patterns after CO adsorption exhibit either a diffuse or a sharp c(4 × 2) structure (stable up to 300 K) depending on the adsorption temperature. Remarkably, the adsorption/desorption behavior of CO on clean Pt3Ti(111) is similar to that on Pt(111) except that partial CO decomposition on Ti sites and partial CO oxidation have also been evidenced. Therefore, the clean surface cannot be terminated by a pure Pt plane. Partially oxidized Pt3Ti(111) surfaces (< 135 L O2 exposure at 1000 K) exhibit a CO adsorption/desorption behavior rather similar to that of the clean surface, showing again a c(4 × 2) structure (stable up to 250 K). Only the oxidation of CO is not detectable any more. These results indicate that some areas of the substrate remain non-oxidized upon low oxygen exposures. Heavily oxidized Pt3Ti(111) surfaces (> 220 L O2 exposure at 1000 K) allow no CO adsorption indicating that the titanium oxide film prepared under these conditions is completely closed.  相似文献   

7.
Temperature-programmed-desorption (TPD) spectra and isothermal desorption rates of D2 molecules from a Si(100) surface have been calculated to reproduce experimental β1, A-TPD spectra and isothermal desorption rate curves. In the diffusion-promoted-desorption (DPD) mechanism, hydrogen desorption from the Si(100) (2 × 1) surfaces takes place via D atom diffusion from doubly-occupied Si dimers (DODs) to their adjacent unoccupied Si dimers (UODs). Taking a clustering interaction among DODs into consideration, coverages θDU of desorption sites consisting of a pair of a DOD and UOD are evaluated by a Monte Carlo (MC) method. The TPD spectra for the β1, A peak are obtained by numerically integrating the desorption rate equation R = νA exp(? Ed, A / kBT)θDU, where νA is the pre-exponential factor and Ed, A is the desorption barrier. The TPD spectra calculated for Ed, A = 1. 6 eV and νA = 2.7 × 109 /s are found to be in good agreement with the experimental TPD data for a wide coverage range from 0.01 to 0.74 ML. Namely, the deviation from first-order kinetics observed in the coverage dependent TPD spectra as well as in the isothermal desorption rate curves can be reproduced by the model simulations. This success in reproducing both the experimental TPD data and the very low desorption barrier validates the proposed DPD mechanism.  相似文献   

8.
The absolute coverage (θ) of deuterium adsorbed on Pt(111) in the ranges 180< T<440 K and 5 × 10?6 < P < 5 × 10?2 Pa D2 has been determined by nuclear microanalysis using the D(3He, p)4He reaction. From these data, the isosteric heat of adsorption (Ea) has been determined to be 67 ± 7 kJ mol?1 at θ ? 0.3. This heat of adsorption yields values of the pre-exponential for desorption (10?5 to 10?2 cm2 atom?1 s?1) that lie much closer to the normal range for a second order process than those determined from previous isosteric heat measurements. The Ea versus θ relationship indicates that the adsorbed D atoms are mobile and that there is a repulsive interaction of 6–8 kJ mol?1 at nearest neighbour distances. At 300 K the coverage decreases to ? 0.05 monolayer (? 8 × 1013 D atoms cm?2) as P→ 0, apparently invalidating a recent model of site exchange in the adsorbed layer.  相似文献   

9.
This paper is the second part of a two part series, where the effects of varying the A-site dopant on the defect chemistry and transport properties of the materials (La0.6Sr0.4 ? xMx)0.99Co0.2Fe0.8O3 ? δ, M = Sr, Ca (x = 0.05, 0.1), Ba (x = 0.1, 0.2) (LSMFC) have been investigated. In part I, the findings on the defect chemistry were reported, while the oxygen transport properties are reported here in part II. In the investigated material series, the amount of divalent dopant has been kept constant, while Sr ions have been substituted with Ca ions (smaller ionic radius) or Ba ions (larger ionic radius). The size difference induces different strains into the crystal structure in each composition. The possibility of simple relationships between various crystal strain parameters and the transport properties were analyzed. Oxygen pump controlled permeation experiments and a surface sensitive electrolyte probe were used to extract the permeability and surface resistance, rs. The highest permeability was found for (La0.6Sr0.3Ca0.1)0.99Co0.2Fe0.8O3 ? δ. The apparent activation energy of the permeability was 78 kJ/mol. The inverse surface resistance, rs? 1, also had an activated behavior with an activation energy close to 180 kJ/mol for most of the materials. A reversible transition to an abnormally low rs was found in (La0.6Sr0.3Ca0.1)0.99Co0.2Fe0.8O3 ? δ at T > 1223 K.  相似文献   

10.
Ion blocking in the low keV energy range is demonstrated to be a sensitive method for probing surface adsorption sites by means of the technique of time-of-flight scattering and recoiling spectroscopy (TOF-SARS). Adsorbed atoms can block the nearly isotropic backscattering of primary ions from surface atoms in the outmost layers of a crystal. The relative adsorption site position can be derived unambiguously by simple geometrical constructs between the adsorbed atom site and the surface atom sites. Classical ion trajectory simulations using the scattering and recoiling imaging code (SARIC) and molecular dynamics (MD) simulations provide the detailed ion trajectories. Herein we present a quantitative analysis of the blocking effects produced by sub-monolayer Na adsorbed on a Cu(111) surface at room temperature. The results show that the Na adsorption site preferences are different at different Na coverages. At a coverage θ = 0.25 monolayer, Na atoms preferentially populate the fcc threefold surface sites with a height of 2.7 ± 0.1 Å above the 1st layer Cu atoms. At a lower coverage of θ = 0.10 monolayer, there is no adsorption site preference for the Na atoms on the Cu(111) surface.  相似文献   

11.
《Solid State Ionics》2006,177(35-36):3109-3115
The oxygen nonstoichiometry δ of La1−xSrxCo1−yFeyO3−δ (x = 0.6 and y = 0.2, 0.4) was investigated by thermogravimetry in the range 703  T/°C  903 and 1E−5 < pO2/atm < 1. The oxygen deficit increases with increasing T and decreasing pO2. Electronic conductivities σ were measured as a function of pO2 in the range 1E−5 < pO2/atm < 1 at 700  T/°C  900. At constant T, a p-type pO2-dependence of σ is observed. Oxygen nonstoichiometry data are analyzed with regard to the enthalpy and entropy of oxidation ΔHoxθ and ΔSoxθ, as well as to the partial molar enthalpy and entropy of oxygen with respect to the standard state of oxygen (pO2θ = 1 atm), (hO  HOθ) and (sO  SOθ), respectively. For 2.67  (3  δ)  2.79, (hO  HOθ) decreases with increasing δ, while (sO  SOθ) is constant within the limits of error. Defect chemical modelling was performed by an ideal solution model under consideration of three different valence states for B-site ions (Co or Fe). The dependence of σ on δ is modelled, using calculated defect concentrations as functions of δ. Deviations from the ideal behaviour suggest an immobilization of n-type charge carriers by oxygen vacancies.  相似文献   

12.
The adsorption structure of nitric oxide (NO) on Ir(111) was studied by thermal desorption spectroscopy (TDS) and dynamical analyses of low-energy electron diffraction (LEED). At the saturation coverage at about 100 K, a 2 × 2 pattern was observed by LEED and two peaks appeared at 365 and 415 K in TDS. No change in the LEED IV curves was observed by annealing at 280 K, which means that the NO-saturated surface was retained at this temperature. On the contrary, partial desorption and changes of the LEED IV curves were observed by annealing at 360 K. Combined with previous vibrational studies, it is suggested that one adsorption species is not affected, while another species is partially desorbed and the rest of them are dissociated by annealing at 360 K. Dynamical analyses of LEED were performed for the 280 K-annealed and the 360 K-annealed surfaces, which correspond to the NO-saturated and the NO-dissociated Ir(111) surfaces, respectively. These revealed that NO occupies the atop, fcc-hollow and hcp-hollow sites (atop-NO + fcc-NO + hcp-NO) for the NO-saturated Ir(111) surface with the saturation coverage of 0.75 ML. For the 360 K-annealed surface, the atop-NO is not affected but the fcc-NO and the hcp-NO are partially desorbed as NO and partially dissociated to N and O, both of which occupy the fcc-hollow site on the surface.  相似文献   

13.
We have studied desorption of 13CO and H2O and desorption and reaction of coadsorbed, 13CO and H2O on Au(310). From the clean surface, CO desorbs mainly in, two peaks centered near 140 and 200 K. A complete analysis of desorption spectra, yields average binding energies of 21 ± 2 and 37 ± 4 kJ/mol, respectively. Additional desorption states are observed near 95 K and 110 K. Post-adsorption of H2O displaces part of CO pre-adsorbed at step sites, but does not lead to CO oxidation or significant shifts in binding energies. However, in combination with electron irradiation, 13CO2 is formed during H2O desorption. Results suggest that electron-induced decomposition products of H2O are sheltered by hydration from direct reaction with CO.  相似文献   

14.
15.
The physisorption of Xe on W(111) and of Xe on partial layers of oxygen chemisorbed on W(111) has been studied using flash desorption and work function methods. It has been found that xenon adsorbs up to monolayer coverages at 104K. Xenon desorbs from W(111) as a single binding state following first order kinetics. At low coverages (θXe < 0.07) the binding energy decreases with increasing coverage possibly because of the presence of high energy adsorption sites due to crystal imperfections and edge effects. For θXe > 0.07 the desorption data fit a first order rate expression with a desorption energy of 9.3 kcal/mol and preexponential ν = 1015s?1. The observed work function change of ?1.1 ± 0.1 eV is consistent with monolayer estimates reported in field emission studies of physisorbed xenon on tungsten. The effect of preadsorbed oxygen layers on the physisorption of xenon on this surface is very striking. The energy of desorption shifts as much as 50% higher for a moderate exposure of oxygen. Several physisorption models are explored along with estimates of dispersion and electrostatic interaction contributions.  相似文献   

16.
《Surface science》2003,470(1-2):27-44
Reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) have been used to investigate the effect of pre-dosed O atoms on the adsorption of NO on Pt{2 1 1} at room temperature. RAIRS experiments show that no new species are formed when NO is adsorbed onto a Pt{2 1 1} surface that has been pre-dosed with oxygen and no species are lost from the spectra, compared to spectra recorded for NO adsorption on the clean Pt{2 1 1} surface. However pre-dosed oxygen atoms do influence the frequency and intensity of several of the observed infrared bands. In stark contrast, pre-dosed O has a large effect on the TPD spectra. In particular N2 and N2O desorption, seen following NO adsorption on the clean Pt{2 1 1} surface, is completely inhibited. This effect has been assigned to the blocking of NO dissociation by the pre-adsorbed O atoms. A new NO desorption peak, not seen for NO adsorption on the clean Pt{2 1 1} surface, is also observed in TPD spectra recorded following NO adsorption on an oxygen pre-dosed Pt{2 1 1} surface.  相似文献   

17.
J. Haubrich  C. Becker  K. Wandelt 《Surface science》2009,603(10-12):1476-1485
We present a detailed analysis of the electronic and geometric bonding properties of the model alkene ethene on different mono- and bimetallic surfaces to establish the difference between adsorption energy and interaction energy and to elucidate the chemical character of a single platinum atom in different chemical environments. The adsorption of ethene on Pt(1 1 1) at 100 K leads to two adsorption states, which are commonly described as being of di-σ-type (bidentate, μ2η2) and π-type (monodentate, μ1η2). While the later is the minority species on Pt(1 1 1) it is of larger abundance on the platinum alloys. We have chosen π-bonded ethene for our study since it can be found on Pt(1 1 1), the Pt3Sn and Pt2Sn surface alloys, and Cu3Pt(1 1 1). Density functional theory calculations of the adsorption structures, site and decomposed densities of states, as well as partial charge densities in conjunction with vibrational spectroscopy show that the bonding, i.e. the interaction energy, of the π ethene is only weakly influenced by alloying. Even in a copper matrix – as in the case of Cu3Pt(1 1 1) – the bonding platinum atom essentially keeps its chemical identity and the interaction energy is reduced by only 14% compared to Pt(1 1 1). This observation suggests that bonding on surfaces is a strongly localized phenomenon. However, the adsorption energy decreases significantly due to alloying, which is attributed to the varying local relaxation of the different metal surfaces.  相似文献   

18.
The Ir(111) surface is oxidized with gas-phase oxygen atoms under vacuum condition to achieve an oxidation level beyond its saturation coverage for chemisorption. Two surface oxides, rutile IrO2 of (100) domain and corundum Ir2O3 of (001) domain, have been grown at 550 K with different oxygen exposure of 3.6 × 105 L and 7.2 × 105 L respectively. The temperature programmed desorption (TPD) experiment of rutile IrO2(100) shows its desorption curve (at 4 K s? 1) peaks at 750 K, followed by a long tail of less pronounced desorption features. On the other hand, TPD of corundum Ir2O3(001) displays a symmetric trace, peaking at 880 K. Carbon monoxide titration experiments show that adsorbed CO reduces corundum Ir2O3(001) at 400 K, but CO does not adsorb on rutile IrO2(100) and no reduction reaction occurs. Evidently, among the two surface oxides, corundum Ir2O3(001) involves in catalysis of carbon monoxide oxidation, while rutile IrO2(100) does not. The formation of two surface oxides is also compared, we conclude that the atom arrangement favors Ir2O3(001) at the oxide/metal interface.  相似文献   

19.
Chuan-mei Xie  Hong-yi Fan 《Optik》2012,123(9):784-787
Based on the newly developed parameterized coherent-entangled state representation we propose so-called the generalized Fresnel–Hadamard complementary transformation for asymmetric beamsplitter, which is unitary. The new unitary operator plays the role of both Fresnel transformation for a1 sin θ ? a2 cos θ and Hadamard transformation for a1 cos θ + a2 sin θ, respectively. Physically, a1 sin θ ? a2 cos θ and a1 cos θ + a2 sin θ could be a asymmetric beamsplitter’s two output fields. We show that the two transformations are concisely expressed in the parameterized coherent-entangled state representation as a projective operator in integration form.  相似文献   

20.
Local defects present in CeO2 ? x films result in a mixture of Ce3+ and Ce4+ oxidation states. Previous studies of the Ce 3d region with XPS have shown that depositing metal nanoparticles on ceria films causes further reduction, with an increase in Ce3+ concentration. Here, we compare the use of XPS and resonant photoemission spectroscopy (RESPES) to estimate the concentration of Ce3+ and Ce4+ in CeO2 ? x films grown on Pt (111), and the variation of this concentration as a function of Pd deposition. Due to the nature of the electronic structure of CeO2 ? x, resonant peaks are observed for the 4d–4f transitions when the photon energy matches the resonant energy; (hν = 121.0 eV) for Ce3+ and (hν = 124.5 eV) for Ce4+. This results in two discrete resonant photoemission peaks in valence band spectra. The ratio of the difference of these peaks with off-resonance scans gives an indication of the relative contribution of Ce3+. Results from RESPES indicate reduction of CeO2 ? x on deposition of Pd, confirming earlier findings from XPS studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号