首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Surface science》2003,470(1-2):27-44
Reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) have been used to investigate the effect of pre-dosed O atoms on the adsorption of NO on Pt{2 1 1} at room temperature. RAIRS experiments show that no new species are formed when NO is adsorbed onto a Pt{2 1 1} surface that has been pre-dosed with oxygen and no species are lost from the spectra, compared to spectra recorded for NO adsorption on the clean Pt{2 1 1} surface. However pre-dosed oxygen atoms do influence the frequency and intensity of several of the observed infrared bands. In stark contrast, pre-dosed O has a large effect on the TPD spectra. In particular N2 and N2O desorption, seen following NO adsorption on the clean Pt{2 1 1} surface, is completely inhibited. This effect has been assigned to the blocking of NO dissociation by the pre-adsorbed O atoms. A new NO desorption peak, not seen for NO adsorption on the clean Pt{2 1 1} surface, is also observed in TPD spectra recorded following NO adsorption on an oxygen pre-dosed Pt{2 1 1} surface.  相似文献   

2.
We have used coaxial impact-collision ion scattering spectroscopy (CAICISS) and time-of-flight elastic recoil detection analysis (TOF-ERDA) to investigate the adsorption of atomic hydrogen on the 6H-SiC(0 0 0 1)√3×√3 surface. It has been found that the saturation coverage of hydrogen on the 6H-SiC(0 0 0 1)√3×√3 surface is about 1.7 ML. Upon saturated adsorption of atomic hydrogen, the √3×√3 surface structure changes to the 1×1 structure. The data of the CAICISS measurements have indicated that as a result of the hydrogen adsorption, Si adatoms on the √3×√3 surface move from T4 to on-top sites.  相似文献   

3.
《Surface science》2006,600(8):1654-1658
We present a theoretical study of the metallization of Ge(0 0 1)-p(2 × 1) surface which is observed in experimental data. We have considered the connection between thermal fluctuation of this surface structure and its metallic properties. To this end we have performed long-time MD-DFT simulations. The obtained results show that thermal fluctuation of the Ge(0 0 1)-p(2 × 1) structure may cause its metallization which in not necessary connected with a flip-flop motion of dimer atoms. It was shown that the metallization of the Ge(0 0 1)-p(2 × 1) surface takes place when the dimer buckling angle is reduced to around 11°. In the case of our simulations the considered surface system remained in the metallic state for 25% of the simulation time. We have also found that the metallic state of the fluctuating Ge(0 0 1)-p(2 × 1) surface is built up by dangling bonds of the dimer atoms shifted up (Dup) and down (Ddown).  相似文献   

4.
We have investigated the adsorption of molecular (gaseous) SiO2 on a clean Si(1 0 0) p(2 × 2) reconstructed surface using density functional theory based methods. The SiO2 molecule is found to be chemisorbed on various sites on the Si surface and the most energetically favourable structure is on top of the dimers. The minimum energy pathways for the various adsorption channels indicate that the reaction is barrierless in all cases. The corresponding vibrational spectrum is also calculated and the adsorbed molecules are, as expected, found to have red-shifted vibrational frequencies. The energetically favourable adsorption sites and adsorption energies are comparable to the results found for SiO.  相似文献   

5.
Using scanning tunneling microscopy observations and density functional theory calculations, regularities of the Al magic cluster array self-assembly on Si(1 0 0) surface has been elucidated. While a single Al cluster occupies an area of 4a × 3a, an ordered Al-cluster array exhibits a 4 × 5 periodicity, as the clusters in the array are separated by the 4a × 2a “spacers”. The plausible structural model for the “spacer” was proposed in which the “spacer” is arranged as an ordinary 4a × 3a-Al cluster in which the central atomic row with the topmost Si atom is missing. Appearance of the “spacers” in the Al-cluster array was found to reduce formation energy of the array. Ability to incorporate the rows of Al-“spacers” into the completed 4 × 3 In-cluster array was demonstrated.  相似文献   

6.
We have investigated the structure and morphology of the InAs(1 1 1)B surface using Low Energy Electron Diffraction (LEED), Scanning Tunneling Microscopy (STM) and Scanning Electron Microscopy (SEM). The surface was prepared by annealing in the presence of an arsenic or atomic hydrogen pressure. A (2 × 2) reconstruction that changes into a (1 × 1) unreconstructed surface after prolonged annealing was observed irrespective of preparation method, while the surface morphology was distinctly different in the two cases. Detailed atomic scale models are proposed to explain the behavior. Deposition of Au aerosol nanoparticles on the sample prior to annealing was found to have no effect on the surface reconstruction. The Au particles were found to sink into the surface.  相似文献   

7.
T.J. Delph 《Surface science》2008,602(1):259-267
We report here on a detailed atomistic stress analysis of the near-surface stresses on the 2 × 1 surface reconstruction on Si(0 0 1). We find that the surface stresses are spatially periodic with fairly large amplitude. We additionally investigate the stresses in the neighborhood of an SA-type step.  相似文献   

8.
A.V. Vasev 《Surface science》2008,602(11):1933-1937
Optical properties of MBE-grown GaAs(0 0 1) surfaces have been studied by spectroscopic ellipsometry under dynamic conditions of ramp heating and cooling after desorption of passivating As-cap-layer with low pressure H2 atmosphere (14 Torr) applied to the surface. The temperature dependence of GaAs pseudo-dielectric function with atomically smooth (0 0 1) surface carrying the fixed Ga-rich (4 × 2) reconstruction was obtained for the temperature range of 160–600 °C. It is shown ellipsometrically that GaAs(0 0 1) heating in the molecular hydrogen atmosphere results in the formation of hydrogenated layer on the surface.  相似文献   

9.
Using the single-crystal adsorption calorimeter (SCAC), coverage-dependent heats of adsorption and sticking probabilities are reported for O2 and NO on Pt{1 1 1}, Pt{2 1 1} and Pt{4 1 1} at 300 K. At low coverage, oxygen adsorption is dissociative for all Pt surfaces. The highest initial heat of adsorption is found on Pt{2 1 1}, with a value of 370 kJ/mol, followed by those on Pt{4 1 1} (310 kJ/mol) and Pt{1 1 1} (300 kJ/mol). We attribute this relatively large difference in the dissociative heat of adsorption at low coverage to the step character of the {2 1 1} surface. Initial sticking probabilities, so, are similar for the three surfaces, 0.22 on Pt{1 1 1}, 0.17 on Pt{2 1 1} and 0.18 on Pt{4 1 1}, rapidly decreasing as the oxygen coverage increases. For nitric oxide, the initial heats of adsorption are very similar and consistent with either dissociative or molecular adsorption, with values of 182 kJ/mol on Pt{1 1 1}, 192 kJ/mol on Pt{2 1 1} and 217 kJ/mol on Pt{4 1 1}. The so value is virtually identical for all three systems, with values ranging from 0.82 to 0.85, suggesting that the initial sticking probability is insensitive to the surface structure and adsorption is intrinsically precursor mediated. SCAC data are also used to evaluate pre-exponential factors, ν, for first-order desorption at high coverage where adsorption is non-dissociative. Values of 3 × 1018, 6 × 1018 and 2 × 1018 s?1 for O2, and 4 × 1019, 6 × 1017 and 2 × 1020 s?1 for NO on Pt{1 1 1}, Pt{2 1 1} and Pt{4 1 1}, respectively, are found. These unexpectedly high values are rationalised in terms of conventional transition state theory entropy changes.  相似文献   

10.
Synchrotron radiation ultraviolet photoemission spectroscopy (SRUPS) and X-ray photoelectron spectroscopy (XPS) have been applied to investigate oxygen adsorption on a cadmium zinc telluride (CZT) (1 1 1)A surface. The surface chemical composition and the surface oxidation process were monitored by recording the Te 3d, O 1s, Zn 2p, Cd 4d core level peaks, and the Cd MNN Auger peak. The CZT (1 1 1)A surface was effectively oxidized by dosing oxygen directly. The typical surface state of the clean CZT (1 1 1)A surface was identified. After oxygen exposure, this surface state disappeared and a signal due to the formation of O–CZT appeared. In addition, the work function of CZT decreased with the increasing oxygen exposure.  相似文献   

11.
《Applied Surface Science》2005,239(3-4):451-457
Well-ordered ultra-thin Al2O3 films were grown on NiAl (1 1 0) surface by exposing the sample at various oxygen absorption temperatures ranging from 570 to 1100 K at dose rates 6.6 × 10−5 and 6.6 × 10−6 Pa. From the results of low-energy electron diffraction (LEED), Auger electron spectrometer (AES) and X-ray photon spectroscopy (XPS) observations, it was revealed that oxidation mechanism above 770 K is different from well-known two-step process. At high temperature, oxidation and crystallization occurred simultaneously while in two-step process oxidation and crystallization occurred one after another. At high-temperature oxidation well-ordered crystalline oxide can be formed by a single-step without annealing. Well-ordered Al2O3 layer with thickness over 1 nm was obtained in oxygen absorption temperature 1070 K and a dose rate 6.6 × 10−6 Pa at 1200 L oxygen.  相似文献   

12.
B.A. Hamad 《Surface science》2008,602(24):3654-3659
I performed density functional theory (DFT) calculations combined with MD simulations to study the structural relaxation of Ru(0001) surface. The surface relaxation of the topmost layer is found to be about ?4% at absolute zero temperature. Using MD simulations in the temperatures range of 50 K and 900 K, the effect is found to be minor on the surface relaxation as compared to Pd (1 1 1) clean surface. The effect of surface vibration is also investigated using a LEED code and shows no effect of the vibrational level on the IV curves, which rules out any disagreement between proper theory and LEED results of well prepared surfaces.  相似文献   

13.
The adsorption of tert-butyl isothiocyanate and tert-butyl isocyanate at the Ge(100) ? 2 × 1 surface was probed using multiple internal reflection Fourier transform infrared (FTIR) spectroscopy X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) modeling. Results indicate that there are multiple surface products for each molecule. FTIR studies of tert-butyl isothiocyanate reveal adsorption through an S-dative bonded state, while XPS studies further suggest a reactive desorption product which leaves excess sulfur atoms at the surface. Studies of tert-butyl isocyanate indicate that the molecule dissociatively adsorbs at the surface, resulting in tert-butyl and germyl isocyanate groups, as the major pathway, in addition to forming several minor products, including a [2 + 2] cycloaddition product across the C=N bond. DFT was used to simulate vibrational spectra and map the reaction pathways, and confirms that the assigned products are energetically favorable.  相似文献   

14.
The ability to understand and predict the phase diagrams of surface phases from first principles can be valuable for developing processes for growth of epitaxial structures. In the growth of epitaxial oxides on Si (0 0 1), a submonolayer phase of Sr plays a key role. The physical structure for this phase, which has 2 × 3 symmetry and occurs at 1/6 monolayer Sr coverage, was recently elucidated using both first principles theory and diffraction experiments [J.W. Reiner, K.F. Garrity, F.J. Walker, S. Ismail-Beigi, C.H. Ahn, Role of strontium in oxide epitaxy on silicon (0 0 1), Phys. Rev. Lett. 101 (10) (2008) 105503.]. Our approach to understanding the broader Sr/Si phase diagram combines density functional theory with a thermodynamic analysis of the phase equilibrium between a Sr lattice gas and the 2 × 3 structure. We use reflection high energy electron diffraction (RHEED) to experimentally determine the phase diagram, finding good agreement with theoretical predictions.  相似文献   

15.
Fe3O4 nanoparticles and thin films were prepared on the Au(1 1 1) surface and characterized using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Fe3O4 was formed by annealing α-Fe2O3(0 0 0 1) structures on Au(1 1 1) at 750 K in ultrahigh vacuum (UHV) for 60 min. Transformation of the α-Fe2O3(0 0 0 1) structures into Fe3O4 nanoparticles and thin films was supported by XPS. STM images show that during the growth procedure used, Fe3O4 initially appears as nanoparticles at low coverages, and forms thin films at ~2 monolayer equivalents (MLE) of iron. Two types of ordered superstructures were observed on the Fe3O4 particles with periodicities of ~50 and ~42 Å, respectively. As the Fe3O4 particles form more continuous films, the ~50 Å feature was the predominant superstructure observed. The Fe3O4 structures at all coverages show a hexagonal unit cell with a ~3 Å periodicity in the atomically resolved STM images.  相似文献   

16.
《Surface science》2003,470(1-2):184-192
The coverage-dependent heats of adsorption and sticking probabilities in the interaction of nitric oxide with clean and oxygen pre-covered Ni{2 1 1} surfaces have been measured at 300 K using single crystal adsorption calorimetry. The results are consistent with a switch from dissociative to molecular chemisorption at 1 ML of O plus N adatoms. Initial dissociative adsorption is attributed to step sites with a heat of 400 kJ mol−1. When steps are saturated with adatoms, adsorption proceeds molecularly with a heat of 160 kJ mol−1. With 0.24 ML oxygen adatom pre-coverage, the initial heat is only 250 kJ mol−1 and with 0.6 ML oxygen adatom, NO adsorption is only molecular with an initial heat of 160 kJ mol−1. The NO sticking probability behaviour is consistent with this picture, with successive precursor mediated adsorption at step and terrace sites. The inhibition of dissociation above O, or O plus N, adatom coverages of 1 ML is attributed to the strong lateral repulsive interactions between adatoms, which would drive the dissociative heat of adsorption below that of molecular adsorption at higher coverages.  相似文献   

17.
E. Demirci  A. Winkler 《Surface science》2010,604(5-6):609-616
Co-adsorption of hydrogen and CO on Cu(1 1 0) and on a bimetallic Ni/Cu(1 1 0) surface was studied by thermal desorption spectroscopy. Hydrogen was exposed in atomic form as generated in a hot tungsten tube. The Ni/Cu surface alloy was prepared by physical vapor deposition of nickel. It turned out that extended exposure of atomic hydrogen leads not only to adsorption at surface and sub-surface sites, but also to a roughening of the Cu(1 1 0) surface, which results in a decrease of the desorption temperature for surface hydrogen. Exposure of a CO saturated Cu(1 1 0) surface to atomic H leads to a removal of the more strongly bonded on-top CO (α1 peak) only, whereas the more weakly adsorbed CO molecules in the pseudo threefold hollow sites (α2 peak) are hardly influenced. No reaction between CO and H could be observed. The modification of the Cu(1 1 0) surface with Ni has a strong influence on CO adsorption, leading to three new, distinct desorption peaks, but has little influence on hydrogen desorption. Co-adsorption of H and CO on the Ni/Cu(1 1 0) bimetallic surface leads to desorption of CO and H2 in the same temperature regime, but again no reaction between the two species is observed.  相似文献   

18.
The ultraviolet (UV) photon induced decomposition of acetaldehyde adsorbed on the oxidized rutile TiO2(1 1 0) surface was studied with photon stimulated desorption (PSD) and thermal programmed desorption (TPD). Acetaldehyde desorbs molecularly from TiO2(1 1 0) with minor decomposition channels yielding butene on the reduced TiO2 surface and acetate on the oxidized TiO2 surface. Acetaldehyde adsorbed on oxidized TiO2(1 1 0) undergoes a facile thermal reaction to form a photoactive acetaldehyde–oxygen complex. UV irradiation of the acetaldehyde–oxygen complex initiated photofragmentation of the complex resulting in the ejection of methyl radical into gas phase and conversion of the surface bound fragment to formate.  相似文献   

19.
The initial stage of CdTe growth on silicon has been investigated using angle-resolved photoemission and scanning tunneling microscopy (STM). In order to study initial stage of CdTe on Si, we have desorbed CdTe by annealing at 600 °C so that only one monolayer of Te remains on the Si(1 0 0) substrate. Te/Si(1 0 0)2×1 superstructure has been observed by LEED. Photoemission spectra indicate that Te atoms bond with the Si dangling bond. Atomically resolved STM images reveal that the Te atoms form dimers. It is observed that buckling direction of Te-dimer changes and the dimmers are broken in the site of some dimmer rows. It can be explained that the large lattice mismatch cause the switching of the buckling direction and the breaking of Te-dimer resulted surface relaxation.  相似文献   

20.
The chemisorption of CO2 on the pure Ni (1 1 1) and doped Ni (1 1 1) by transition metal (Co, Rh, Cr, Ce, La) were investigated by using the generalized gradient approximation (GGA) and the Perdew–Burke–Emzerhof (PBE) functional. The optimized structure of doped metal surface showed that Rh, Cr, Ce, La atoms upward shift from the surface of Ni (1 1 1) plane, while the atom radius of Co is the minimum offset which lead to the height is ?0.03 Å. The ability of CO2 chemisorption follows the order of La/Ni (1 1 1) > Ce/Ni (1 1 1) > Cr/Ni (1 1 1) > Co/Ni (1 1 1) > pure Ni (1 1 1). It is exothermic when CO2 chemisorbed on Cr/Ni (1 1 1) Ce/Ni (1 1 1) and La/Ni (1 1 1), while it is endothermic on the Co/Ni (1 1 1) and pure Ni (1 1 1). CO2 molecular chemisorbed on all the metal surfaces are negatively charged, result from the electron transfer between the metal surfaces and the CO2 molecular. The transition metals La, Ce and Cr can promote the transformation of electron and make the CO bonds longer than the pure Ni (1 1 1). We also analyzed the dissociation of CO2 on the Ni-based surface and found that the La/Ni (1 1 1) surface is the preference surface for the dissociation of CO2, which improved the ability to hinder carbon deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号