首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
La0.5Bi0.5MnO3 ceramics with a single phase were prepared by a solid-state reaction method, and their dielectric properties were characterized. Two dielectric relaxations with a giant dielectric constant were identified in the temperature range from 125 to 350 K. The electron hopping between Mn3+ and Mn4+ was found to be the origin of the dielectric relaxation at low temperatures (125–200 K) with an activation energy of 0.18 eV. The high temperature (200–350 K) dielectric relaxation can be attributed to the conduction.  相似文献   

2.
The sintering characteristic and dielectric properties of 0.67PMN–0.33PT ceramics prepared by the molten salt synthesis (MSS) method were investigated. PMN–PT particles synthesized by MSS with smaller grain size and good dispersion could lower the sintering temperature of ceramics; PMN–PT ceramics with relative density above 96% could be obtained in the range 1150–1180 °C. The molten salts species could significantly affect the microstructure and properties of MPN-PT ceramics. In the range 1100–1200 °C, PMN–PT ceramics from the sulfate flux MSS powders showed intergranular fracture, but that from the chloride flux MSS powder showed transgranular fracture. At the same sintering condition, the properties of PMN–PT ceramics from the powders prepared in the chloride flux are better than that from the powders prepared in the sulfate flux, their maximum dielectric constant εmax≈29,385 and piezoelectric constant d33≈660 pC/N. The above results demonstrated that PMN–PT ceramics prepared by the molten salts method possessed excellent piezoelectric and dielectric properties.  相似文献   

3.
LuFeO3 ceramics were prepared, and the dielectric characteristics were investigated together with the structure. A giant dielectric constant step (8000 at 10 kHz, 7200 at 100 kHz, and 4000 at 1 MHz) very similar to that in LuFe2O4 was observed. The dielectric constant dropped quickly when the temperature decreased through a critical temperature which increased significantly when the frequency increased. A very high relaxor-like dielectric peak with strong frequency dispersion was also observed in a higher temperature range. Two obvious corresponding dielectric relaxation peaks were observed on the curve of dielectric loss vs temperature, and all these dielectric relaxations followed the Arrhenius law. The Fe2+/Fe3+ mixed-valence structure and the oxygen vacancy primarily governed these relxor-like dielectric behaviors. However, the present ceramics are not relaxor ferroelectric.  相似文献   

4.
Lead magnesium niobate, Pb(Mg1/3Nb2/3)O3 (PMN) ceramics were prepared from the columbite method using calcined powders of various milling time (24–96 h). The effects on the grain size and dielectric properties of the ceramics were investigated. The results show that dielectric properties of ceramics are strongly influenced by the milling time of the starting precursors. Higher percentage of perovskite phase was found in the ceramics that was milled longer and thus the dielectric constant was found to increase when compared to the conventional 24 h milled results. Moreover, milling time also affected the particle size of the starting precursors and that of PMN powders. Therefore, milling time did not only affect the particle size of PMN powders but also the resultant grain size and the formation of perovskite phase, consequently affecting the dielectric constant of the ceramics.  相似文献   

5.
This paper describes the effect of 8 MeV of electron beam (EB) energy irradiation on the electrical conductivity and dielectric properties of sodium fluoride NaF-doped polyethylene oxide (PEO) film. The structural and chemical characterizations were employed using X-ray diffractometry (XRD) and Fourier Transform Infrared (FTIR) techniques respectively before and after irradiation. The morphology study carried out using Scanning Electronic Microscopy (SEM) analysis. The DC electrical conductivity showed increases with dose and temperature and was consistent with Arrhenius behavior. The maximum conductivity of 1.1 × 10−5 S/cm and minimum activation energy of 0.25 eV were obtained at 25 kGy, 338 K; further increases in the dose resulted in a reduction in conductivity. The real (ε′) and imaginary (ε″) part of the dielectric constant suddenly decreased in a low frequency region (40–640 Hz), subsequently independent at higher frequency. The AC conductivity showed increases with frequency and temperature for all films. The dielectric constant and AC conductivity increased at the 25 kGy dose due to chain scission. Further increases in dose such as 50 and 75 kGy, resulted in a decrease in dielectric constant and AC conductivity due to cross-linking. The electric modulus approach was used to calculate the dielectric relaxation time (τ), which decreased at 25 kGy and then increased at 50 and 75 kGy doses. The modulus data were fitted using a non-exponential Kohlrausch–Williams–Watts (KWW) function ϕ (t), and the results indicate the existence of a non-Debye relaxation.  相似文献   

6.
The luminescence properties of ZnO ceramics with grains 100–5000 nm sintered by different techniques from nanopowders were studied. The luminescence decay times were compared with that obtained for ZnO single crystal. The temperature dependence of non-exponential decay of defect luminescence (2.0–2.6 eV) was measured in wide time, intensity and temperature range. The luminescence decay kinetic at T ≤ 20 K shows the decay close to I(t) ~ t?1 dependence. At temperature region 50–250 K the decay kinetics is more complicate since the TSL was observed in this temperature region. It is shown that the luminescence properties of NP and ceramics strongly depend on defect distribution on grains surface and the volume/surface ratio determine the luminescence decay in ZnO nanostructures and ceramics.  相似文献   

7.
Dielectric and nonohmic properties of CaCu3Ti4O12 (CCTO) ceramics can be modified by addition of SrTiO3 (STO) in different molar proportions which were fabricated by a modified sol-gel method. XRD results indicated that all modified ceramics showed mixed phase consisting of both CCTO and STO. SEM images and grain size distribution probability also presented the change of microstructure with the addition of STO. The dielectric loss of the CCTO/0.4STO ceramics sintered at 1000 °C can be lower than 0.02 in a wide frequency (1 kHz–10 kHz), especially at 1 kHz, the dielectric loss of this sample is as low as 0.012. Furthermore, excellent nonlinear I–V electrical characteristic (high breakdown voltage to 54.15 kV/cm for CCTO/0.4STO sintered at 1000 °C) was observed as well. All the results indicated that the addition of STO does improve the dielectric properties and nonohmic characteristics of CCTO ceramics dramatically.  相似文献   

8.
《Current Applied Physics》2015,15(11):1370-1376
Dielectric ceramic materials (1 − x) KNbO3  xK0.5Bi0.5TiO3 (0 ≤ x ≤ 0.3) have been successfully synthesized via a stirred (dynamic) hydrothermal method. The microstructure, relative density and dielectric properties were studied as a function of KBT doping. The structure of the solid solutions changed from orthorhombic (x = 0; 0.05) to tetragonal (x = 0.1; x = 0.3) at room temperature. The morphotropic phase limit was obtained at x = 0.075 where we have noted the coexistence of the orthorhombic and tetragonal structures. The mean value of the measured dielectric permittivity εr was 700 and dielectric loss tanδ was about 0.06 at room temperature. The dielectric properties of the studied ceramics, from 80 to 450 K, depend not only on their microstructure but also on their relative density. A relaxation behavior was observed for the tanδ curves at temperature below 150 K. The activation energy (Ea) of this phenomenon increases from 0.15 to 0.34 eV with the increase of KBT amount. The conductivity σac remains constant at about 10−6 S m−1.  相似文献   

9.
This paper presents the results of dielectric constant and Electron Paramagnetic Resonance (EPR) investigations of Fe3+-doped TlGaSe2 single crystals in the temperature range of 15–300 K. The influence of Fe impurities on dielectric properties and phase transitions of TlGaSe2 crystal has been studied. The results were considered in comparison with earlier observed results from pure TlGaSe2 compounds. We observed the considerable decrease of the dielectric constant as well as the change of the shape of the temperature dependence of the dielectric constant in doped crystals. Some certain significant changes of EPR spectra, which are associated with a strong splitting and appearance of additional resonance lines, were observed at the temperatures below 110 K. Such transformations are considered as the result of non-equivalent displacements of different groups of Tl atoms during the structural phase transitions.  相似文献   

10.
The effect of a dc bias field on the diffuse phase transition and nonlinear dielectric properties of sol-gel derived Ba(Zr0.2Ti0.8)O3 (BZT) ceramics are investigated. Diffuse phase transitions were observed in BZT ceramics and the Curie–Weiss exponent (CWE) was γ∼2.0. The dielectric constant versus temperature characteristics and the γ in the modified Curie–Weiss law, ε −1=ε m −1[1+(TT m ) γ /C1](1≤γ≤2), as a function of the dc bias field was obtained for BZT ceramics. The results indicated that γ is a function of dc bias field, and the γ value decreased from 2.04 to 1.73 with dc bias field increasing from 0 to 20 kV/cm. The dielectric constant decreases with increasing dc bias field, indicating a field-induced phase transition. The dc bias field has a strong effect on the position of the dielectric peak and affects the magnitude of the dielectric properties over a rather wide temperature range. The peak temperature of the dielectric loss does not coincide with the dielectric peak and an obvious minimum value for the dielectric loss at the temperature of the dielectric peaks is observed. At room temperature, 300 K, the high tunability (K=80%), the low loss tangent (≈0.01) and the large FOM (74), clearly imply that these ceramics are promising materials for tunable capacitor-device applications.  相似文献   

11.
《Current Applied Physics》2018,18(2):220-225
The present study represents a systematic temperature dependent charge transport and dielectric properties of nanocrystalline silicon carbide nitride (nc-SiCN) thin films grown on Pt/Ti/SiO2/Si substrate. A large negative temperature coefficient of resistance (TCR) ranging from 6200 to 2300 ppmK-1 in the temperature range 300–773 K, suggests that the nc-SiCN thin films could be useful for futuristic thermal-based sensors. The current density vs. electric field (J-E) characteristics was measured at different temperatures (300–673 K). Detailed J-E analysis revealed an ohmic conduction at the low applied electric field (<65 kV/cm) within the entire temperature range. However, at high electric field (>65 kV/cm), space charge limited conduction (SCLC) mechanism was found to be dominating in low measurement temperature (300–473K), whereas, a transition from SCLC mechanism to Poole-Frenkel mechanism was observed with further increment in the temperature beyond 473 K. The temperature invariant dielectric tunability (nr ∼10%) and low zero electric field leakage current density (J ∼10−7A/cm2) at 673 K temperature, demonstrates the feasibility of nc-SiCN thin films for tunable device applications in the high-temperature and harsh environment.  相似文献   

12.
《Current Applied Physics》2009,9(5):1155-1159
Pure and sodium chloride (NaCl)-added Triglycine sulfate (TGS) crystals were grown from aqueous solutions by slow evaporation technique. The values of concentration of dopants in the mother solution were 0.2, 0.6 and 1 mol%. The solubility of the grown samples have been found out at various temperatures. The determination of unit cell parameters was carried out by single crystal XRD method and found that the grown crystals crystallize in monoclinic structure. The dielectric characterization for the pure and NaCl-doped TGS crystals was performed by measuring the dielectric parameters like dielectric constant and dielectric loss with various frequencies in the range 102–106 Hz and with the temperatures ranging from 30 to 70 °C and this study reveals an increase of dielectric constant and loss with the increase of NaCl concentration. Studies on mechanical properties like microhardness and density of the grown pure and NaCl-doped TGS crystals were carried out. UV–Visible transmittance studies were carried out for the grown samples. A sharp fall in the transmittance is observed at 228 nm for pure and NaCl-doped TGS crystals. Atomic absorption spectroscopic (AAS) study was done on the NaCl-doped TGS crystals to ascertain the presence of Na+ ions in the lattice.  相似文献   

13.
《Current Applied Physics》2010,10(4):1059-1061
Lead-free 0.79(Bi0.5Na0.5)TiO3–0.14[Bi0.5(K0.5−xLix)]TiO3–0.07BaTiO3 (BNBK79 + xLi, x = 0.0, 0.1, 0.2, 0.25, 0.3, and 0.4) ceramics were prepared by conventional solid state reaction process. The crystalline structures and surface morphologies are investigated by X-ray diffraction method and scanning electron microscopy. Dielectric and piezoelectric properties were measured. With increasing of lithium substitution, the Curie temperatures of BNBK79 + xLi ceramics increase, but the maximum value of the dielectric constant decreases. And a relatively large remnant polarization of 17.6 μC/cm2 and 157 pC/N of d33 has been obtained when x = 0.3.  相似文献   

14.
The effects of tellurium (Te) additives on electrical conductivity, dielectric constant and structural properties of sintered silicon nitride ceramics have been studied. Different amounts of Te (10% and 20%) were added as sintering additives to silicon nitride ceramic powders and sintering was performed. Microstructure and composition were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrical conductivity and dielectric constant (ε′) increase exponentially with temperature greater than 800 K. The electrical conductivity and dielectric constant increase but activation energy decreases from 0.72 to 0.33 eV with the increase of Te concentration. However, the conductivity increases five orders of magnitude at the concentration of 10% of Te in Si3N4. As the Te concentration increases the sintered silicon nitride ceramics become denser. These types of samples can be used as high temperature semiconducting materials.  相似文献   

15.
In this work, ((1−x)Ba(Fe1/2Ta1/2)O3-xBa(Zn1/3Ta2/3)O3), ((1−x)BFT-xBZT) ceramics with x = 0.00–0.12 were synthesized by the solid–state reaction method. X-ray diffraction data revealed that both the powders and ceramics were of a pure-phase cubic perovskite structure. All ceramics showed large dielectric constants. For the x = 0.12 sample, a very high dielectric constant (>20,600) was observed. A lowering in the dielectric loss compared to pure BFT ceramics was observed with the BZT addition. The impedance measurements indicated that BZT has a strong effect on the bulk grain and grain boundary resistance of BFT ceramics. These results are in agreement with the measured dielectric properties. Based on dielectric and impedance results, (1−x)BFT-xBZT ceramics could be of great interest for high performance dielectric materials applications due their giant dielectric constant behavior.  相似文献   

16.
《Current Applied Physics》2014,14(3):331-336
Lead-free piezoelectric ceramics (1 − x)Bi0.5Na0.5TiO3xBaZrO3 (BNT–BZ100x, with x = 0–0.10) were prepared using a conventional solid-state reaction method. The crystal structure, microstructure, dielectric, ferroelectric, and piezoelectric properties of BNT–BZ100x ceramics were studied as functions of different BZ content. X-ray diffraction patterns revealed that the BZ completely diffused in the BNT lattice in the studied composition range. An appropriate amount of BZ addition improved the dielectric, ferroelectric, and piezoelectric properties of BNT ceramics. The remanent polarization (Pr) and piezoelectric constant (d33) increased from 22 μC/cm2 and 60 pC/N for pure BNT to 30 μC/cm2 and 112 pC/N for x = 0.040, respectively. In addition, electric field-induced strain was enhanced to its maximum value (Smax = 0.40%) with normalized strain (d*33 = Smax/Emax = 500 pm/V) at an applied electric field of 8 kV/mm for x = 0.055. The enhanced strain can be attributed to the coexistence of ferroelectric and relaxor ferroelectric phases.  相似文献   

17.
Nanocelluloses are potential candidates for applications in flexible electronic due to their unique physical and mechanical properties. However, electrical properties of these materials have not investigated thoroughly to study their electrical properties. In the current work, electrical properties of nanocellulose films prepared from bagasse pulp were studied and compared with those of bagasse pulp fibers. Two kinds of nanocelluloses were used in the current study: microfibrillated cellulose (MFC) and TEMPO‐oxidized nanofibrillated cellulose (NFC). The crystallinity, grain size, and morphology of the different nanocelluloses were studied using X‐ray diffraction and transmission electron microscopy techniques. The dc‐, ac‐ electrical conductivity, dielectric constant ?′, and dielectric loss ?″ of non‐plasticized and glycerol‐plasticized nanocellulose films were studied in the temperature range from 298 to 373 K and in the frequency range from 0.1 KHz to 5 MHz. The results showed that the dc‐ electrical conductivity verifies Arrhenius equation and the activation energies varied in the range of 0.9 to 0.42 eV. Ac‐electrical conductivity increased with frequency and fitted with power law equation, which ensures that the conduction goes through hopping mechanism. The dielectric constant decreased with increasing frequency and increased with increasing temperature, probably due to the free movement of dipole molecular chains within the cellulose fiber. Glycerol‐plasticized NFC (NFC‐G) film had the highest dielectric constant and ac‐electrical conductivity values of 79 800 and 2.80× 10?3ohm?1 cm?1, respectively. The high values of dielectric constant and conductivity of the prepared films support their use in electronic components.  相似文献   

18.
The BaZrO3 and Ta have been used to improve piezoelectric properties of (K, Na)NbO3 ceramics by the construction of the phase boundary, and (1 ? x)K0.48Na0.52(Nb0.95Ta0.05)O3xBaZrO3 [(1 ? x)KNNT–xBZ] ceramics were prepared by the conventional solid-state method. The effect of BZ content on their phase structure, microstructure, and electrical properties has been investigated. A rhombohedral and orthorhombic phase coexistence has been observed in the compositional range of 0.05 ≤ x ≤ 0.07. With increasing BZ content, their Tc and To–t values decrease gradually, and the dielectric constant increases linearly. The ceramic with x = 0.06 exhibits an enhanced piezoelectric behavior (d33 ~ 193 pC/N and kp ~ 32.6%) because of the coexistence of two phases together with a dense microstructure. As a result, the construction of a rhombohedral and orthorhombic phase boundary is an effective way to improve the piezoelectric properties of KNN-based ceramics.  相似文献   

19.
In this paper, we proposed a novel infrared absorbing structure for uncooled infrared detectors. The infrared absorber makes use of a quarter-wavelength structure composed of a dielectric layer, a protecting layer, an active layer, a supporting layer and a reflecting layer. Sputtered amorphous silicon is used as a dielectric layer because of its high refractive index. We fabricated the uncooled microbolometer with the proposed infrared absorbing structure by surface micromachining method. Then we characterized various bolometric properties such as thermal conductance, thermal time constant, responsivity and infrared absorptance. The fabricated bolometer showed the thermal conductance of 6.72 × 10−7 W/K, the thermal mass of 4.43 × 10−9 J/K, the thermal time constant of 6.6 ms and the responsivity of 7.76 × 103 V/W at 10 Hz chopper frequency and 9.22 μA bias current. From the results, the estimated absorptance is about 80%. We expect that the proposed absorbing structure shows high infrared absorption and high performance of uncooled microbolometer.  相似文献   

20.
《Current Applied Physics》2020,20(7):866-870
(Li + Nb) co-doped (Li + Nb)xFe2-xO3 (with x = 0.0005, 0.005, 0.05, and 0.1) ceramics were prepared by sol-gel method. Their structural, dielectric, humidity, and magnetic properties were investigated. Colossal permittivity (~104) was approached or achieved in all doped samples even with a very small doping level of x = 0.0005. The colossal permittivity behavior is composed of two dielectric relaxations with the low-temperature one being a polaron relaxation due to electrons hopping between Fe3+ and Fe4+ ions and the high-temperature one being a Maxwell-Wagner relaxation caused by humidity-sensing properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号