首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In laser cleaving of brittle materials using controlled fracture technique, thermal stresses are used to induce a crack and the material is separated along the cutting path by extending this crack. In this study, a glass sheet is stressed thermally using a 808-940 nm diode laser radiation. One of the problems in laser cutting of glass with controlled fracture technique is the cut deviation at the leading and the trailing edges of the glass sheet. In order to avoid this damage it is necessary to understand the stress distributions which control crack propagation. A study is conducted here to analyse the cut deviation problem of glass by examining the stress fields during diode laser cutting of soda-lime glass sheets. Optical microscope photographs of the breaking surface are obtained to examine the surface quality and cut path deviation while the latter is explained from the results of the stress fields which are obtained from a finite element simulation.  相似文献   

2.
Laser cutting of glass using the controlled fracture technique leads to cut path deviation at the leading and trailing edges of the float glass sheet. In this technique, thermal stresses are used to induce the crack, and the material is separated along the cutting path by extending the crack. We show that the cut path deviation is partly due to high magnitudes of thermal stresses generated near the sheet edges. The absorption of intense radiation from the CO2 and diode laser beams in the glass causes local temperature increases and consequently generates different thermal fields and stress distributions due to surface and volumetric heat absorption. In this paper, we report the effect of the CO2 and diode laser wavelength interaction with the float glass and its effect on the magnitudes of thermal stresses generated near the edges of the glass sheet. We simulate the distribution of the thermal stress and temperature using finite-element analysis software Abaqus and validate it against the experimental data. We show that the CO2 laser produces a lower surface quality and a larger cut path deviation at the leading and trailing edges of the glass sheet as compared to the diode laser.  相似文献   

3.
In laser cutting of sheet metals, thermal stresses are developed in the region of the cutting section. Depending on the cutting conditions and substrate material properties, the thermal stress levels can attain high values. In the present study, thermal stress developed in the region of the laser cut edges is modeled and temperature as well as stress fields are predicted. Temperature predictions are validated through the experimental results. It was found that the temporal variation of the maximum temperature along y-axis follows the laser heating source. However, temporal variation of von-Mises stress deviates slightly from the temporal variation of temperature along the cutting direction. Increase in scanning speed enhances the von-Mises stress levels due to the attainment of high temperature gradients in the substrate material.  相似文献   

4.
In some applications, laser cutting of wedge surfaces cannot be avoided in sheet metal processing and the quality of the end product defines the applicability of the laser-cutting process in such situations. In the present study, CO2 laser cutting of the wedge surfaces as well as normal surfaces (normal to laser beam axis) is considered and the end product quality is assessed using the international standards for thermal cutting. The cut surfaces are examined by the optical microscopy and geometric features of the cut edges such as out of flatness and dross height are measured from the micrographs. A neural network is introduced to classify the striation patterns of the cut surfaces. It is found that the dross height and out of flatness are influenced significantly by the laser output power, particularly for wedge-cutting situation. Moreover, the cut quality improves at certain value of the laser power intensity.  相似文献   

5.
Laser cutting of sharp edge: Thermal stress analysis   总被引:1,自引:0,他引:1  
Laser cutting of sharp edge and thermal stress development in the cutting section is examined. The finite element method is used to predict temperature and stress fields while the X-ray diffraction (XRD) technique is used to measure the residual stress around the cut edges. A mild steel sheet with 5 mm thickness is used in the simulations and the experiment. The morphological and metallurgical changes around the edges are examined using the optical microscopy and scanning electron microscopy (SEM). It is found that temperature remains high at the sharp edge when the laser beam is located in this region. This, in turn, lowers the cooling rate and reduces von Mises stress in this region. The magnitude of the residual stress is about 90 MPa at the sharp corner while the maximum von Mises stress is in the order of 280 MPa, which occurs away from sharp corner. In addition, the residual stress predicted agrees with the experimental data.  相似文献   

6.
Laser cutting of hole in a mild steel thick sheet metal is investigated. Temperature and stress fields developed around the cutting section are simulated using the finite element method. An experimental is carried out accommodating the simulation parameters. The residual stress developed in the cutting section is measured using the XRD technique and findings are compared with the predictions. Optical microscopy and SEM are carried out to examine the morphological changes in the cutting sections. It is found that temperature decays sharply in the region of the laser heat source, which results in high temperature gradient in this region. This causes the development of high stress levels around the cut edges. The residual stresses predicted are in agreement with the measured results.  相似文献   

7.
In order to improve the cutting quality, a dual-laser-beam method was proposed to cut glass substrates in the current study, where a focused CO2-laser beam was used to scribe a straight line on the substrate, and a defocused CO2-laser beam was used to irradiate on the scribing line to generate a tensile stress and separate the substrate. The finite-element-method (FEM) software ANSYS was applied to calculate the temperature distribution and the resulting thermal stress filed. Through experimental study, it concluded that the glass substrate can be separated along an expected path with dual-laser beams and the cutting quality can be improved comparing with the cutting using a defocused laser beam alone. The relation between the cutting speed and the defocused laser power was also investigated in cutting glass with this method.  相似文献   

8.
An investigation of pulsed laser cutting of titanium alloy sheet   总被引:3,自引:1,他引:2  
Subsequent welding requirement calls for high-quality laser cut surfaces in the laser cutting of bladed ring parts for aeroengines. This paper presents pulsed laser cutting of titanium alloy sheet and investigates the influences of laser cutting parameters on laser cut quality factors including heat-affected zone (HAZ), surface morphology and corrosion resistance. The thickness of HAZ lasers is studied in detail as a function of laser cutting parameters. For different assist gases the surface morphology and corrosion resistance show great differences. In comparison with air- and nitrogen-assisted laser cutting, argon-assisted laser cutting comes with unaffected surface quality and is suitable for laser cutting with subsequent welding requirement.  相似文献   

9.
Laser cutting using the controlled fracture technique has great potential to be employed for the ceramic substrate machining. The heat produced on the surface of a ceramic substrate by the laser separates the substrate controllably along the moving path of the laser beam. Because the extension of the breaking frontier is lager than the movement of the laser spot, the actual fracture trajectory deviates from the desired trajectory when cutting a curve or cutting an asymmetrical straight line. To eliminate this deviation, the iterative learning control method is introduced to obtain the optimal laser beam movement path. The fracture contour image is grabbed by a CCD camera after laser cutting completion. A new image processing system is proposed to detect the deviation between the desired cutting path and the actual fracture trajectory. The laser-movement path for the next trial can then be determined according to the iterative path revision algorithm. The actual fracture trajectory converging to the desired cutting path is assured after a few path revisions. The experimental materials used in these experiments are alumina ceramics and the laser source is CO2 laser. The proposed system can achieve a machining precision of about 0.1 mm.  相似文献   

10.
Some principal aspects of silicate glass cutting by controlled laser through thermal cleavage are considered. In particular, it is shown that the cutting speed in the case of ytterbium fiber laser radiation with a wavelength of 1.065 μm lying in fact in the glass transmission range (more precisely, in the low absorption region) depends linearly on the laser power. It is shown that the glass end face takes various geometrical shapes under various conditions of bulk heating and cooling. Therefore, to obtain a homogeneous end face, it is required to stabilize both the laser radiation power and the laser beam speed at a corresponding laser beam geometry in the cut region. Methods for obtaining various cross section shapes of the glass end face and methods for obtaining blunt edges of end faces are presented.  相似文献   

11.
A lumped parameter mathematical model is developed to relate the cut depth to the laser cutting parameters and material properties. The model takes into account the threshold power of the incident laser beam for the initiation of cutting and modifies an earlier cutting model so that it applies to a wide set of process parameters ranging from low to high laser powers and slow to fast cutting speeds. Plain steel is taken as an example to show the effects of various process parameters such as the laser power, spot size and cutting speed on the cut depth. Special emphasis is given to the effect of laser mode structure on its cutting capability.  相似文献   

12.
This paper reports a statistical analysis of the multiple-pass laser cutting of wet and dry pine wood with a Ytterbium fibre laser. As multiple factors affect the laser wood cutting process, finding the optimal combination of process parameters is necessary to achieve good quality and high process efficiency. Design of experiments (DOE) and statistical modelling were used in this study to investigate the significant process parameters and their interactions. A high brightness, 1 kW IPG single mode, continuous wave Ytterbium doped fibre laser was employed to cut wet and dry pine wood samples. The parameters investigated are laser power, traverse speed, focal plane position (f.p.p.), gas pressure, number of passes, direction of cut (normal or parallel to wood's tracheids) and the moisture content. The experimental results were compared against process responses defining the efficiency (i.e. kerf depth and energy consumption) and quality of the cut section (i.e. kerf width, heat affected zone—HAZ, edge surface roughness and perpendicularity). It has been found that the laser cutting process was mainly affected by the moisture content and the cut direction with respect to the wood's tracheids, followed by traverse speed, laser power and the number of passes. The effect of moisture content on energy consumption in the laser cutting process of both wet and dry wood is analysed. The wood cutting results with fibre laser are compared with those from a CO2 laser.  相似文献   

13.
A three-dimensional, semi-stationary, simplified thermal numerical model was developed. The average cutting front temperature difference in disk and CO2 laser beam fusion cutting of 90MnCrV8 was estimated by computing the conductive power loss. Basing on heat affected zone extension experimentally measured and using an inverse methodology approach, the unknown thermal load on the cutting front during laser cutting was calculated. The accuracy of the numerical power loss estimation was evaluated comparing the results from simulation with the ones from analytical models. A good agreement was found for all the test cases considered in this study. The conduction losses estimation was used for justifying the lower quality of disk laser cuts due to the lower average cut front temperature. This results in the increase of viscosity of molten material and in the subsequent more difficult ejection of the melted material from the cut kerf.  相似文献   

14.
Although forming sheet metal by laser-induced thermal stresses (laser forming) has been extensively studied, the research has mainly focused on a single angle forming process. The task of free curve laser forming of sheet metal is to determine a set of process parameters such as laser scanning paths, laser power and scanning speed that will make a given shape. Two methods were used for generating the laser scanning paths and the bending angles of each path. Each method was analyzed by computer simulation and the two methods were compared. Experiments verified the applicability of the proposed methods.  相似文献   

15.
A study of laser cutting engineering ceramics   总被引:5,自引:0,他引:5  
A mechanical chopper Q-switched CO2 pulse laser with high peak power, short pulse duration, high pulse repetition rate and moderate average power is developed. Using this laser, a multi-pass cutting process with high cutting speed is proposed for cutting hard and brittle materials such as engineering ceramics. Crack-free and fine cut is obtained in cutting Si3N4 ceramics. Moreover, the formation and elimination of the cracks are qualitatively analyzed in the paper.  相似文献   

16.
Experiments were performed to determine the effect of lens, position and focal plane, speed of cut and power on the cutting and drilling rates of Perspex. The results were compared to the thermal conductivity and vapour removal theories developed and presented in the paper. The latter was found to be in good agreement with the experimental observations, and provides a sound basis for the assessment of laser machining of other materials which behave in a similar manner.  相似文献   

17.
Laser cutting is a popular manufacturing process utilized to cut various types of materials economically. The width of laser cut or kerf, quality of the cut edges and the operating cost are affected by laser power, cutting speed, assist gas pressure, nozzle diameter and focus point position as well as the work-piece material. In this paper CO2 laser cutting of stainless steel of medical grade AISI316L has been investigated. Design of experiment (DOE) was implemented by applying Box–Behnken design to develop the experiment lay-out. The aim of this work is to relate the cutting edge quality parameters namely: upper kerf, lower kerf, the ratio between them, cut section roughness and operating cost to the process parameters mentioned above. Then, an overall optimization routine was applied to find out the optimal cutting setting that would enhance the quality or minimize the operating cost. Mathematical models were developed to determine the relationship between the process parameters and the edge quality features. Also, process parameters effects on the quality features have been defined. Finally, the optimal laser cutting conditions have been found at which the highest quality or minimum cost can be achieved.  相似文献   

18.
19.
This paper presents a hybrid optimization approach for the determination of the optimum laser cutting process parameters which minimize the kerf width, kerf taper, and kerf deviation together during pulsed Nd:YAG laser cutting of a thin sheet of nickel-based superalloy SUPERNI 718 (an equivalent grade to Inconel 718). A hybrid approach of Taguchi methodology and grey relational analysis has been applied to achieve better cut qualities within existing resources. The input process parameters considered are oxygen pressure, pulse width, pulse frequency, and cutting speed. A higher resolution based L27 orthogonal array has been used for conducting the experiments for both straight and curved cut profiles. The designed experimental results are used in grey relational analysis and the weights of the quality characteristics are determined by employing the entropy measurement method. The significant parameters were obtained by performing analysis of variance (ANOVA). The optimized parameters for straight and curved laser cut profiles have been compared. On the basis of optimization results it has been found that the optimal parameter level suggested for straight cut profiles are not valid for curved cut profiles. The application of the hybrid approach for straight cuts has reduced Kt and Kd by 52.37% and 17%, respectively. For curved cuts the approach has reduced Kw and Kt by 8.45% and 44.44%, respectively. The results have also been verified by running confirmation tests.  相似文献   

20.
血管支架光纤激光切割技术   总被引:3,自引:0,他引:3  
采用光纤激光器对血管支架进行了激光切割工艺研究,通过实验获得了聚焦透镜焦距及焦点位置、输出功率、切割速度、脉冲频率、脉冲宽度、辅助气体种类及压强等工艺参数对切缝宽度和缝面质量的影响规律.结果表明:缝宽随输出功率、频率、脉宽及辅助氧压的增大而增加,随着切割速度的增加而减小.在实验的基础上找出了血管支架切割的最佳工艺参数,在316LVM不锈钢细管上(管壁厚度为0.12 mm,直径为2 mm)获得了切缝均匀,缝宽小于20 μm网状结构的血管支架.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号