首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The effect of 60 keV Ar+-ion beam sputtering on the surface topography of p-type GaAs(1 0 0) was investigated by varying angle of incidence of the ion (0–60°) with respect to substrate normal and the ion fluence (2 × 1017–3 × 1018 ions/cm2) at an ion flux of 3.75 × 1013 ions/cm2-s. For normal incidence and at a fluence of 2 × 1017 ions/cm2, holes and islands are observed with the former having an average size and density of 31 nm and 4.9 × 109 holes/cm2, respectively. For 30° and 45° off-normal incidence, in general, a smooth surface appears which is unaffected by increase of fluence. At 60° off-normal incidence dots are observed while for the highest fluence of 3 × 1018 ions/cm2 early stage of ripple formation along with dots is observed with amplitude of 4 nm. The applicability and limitations of the existing theories of ion induced pattern formation to account for the observed surface topographies are discussed.  相似文献   

2.
The interaction of S2 with Ag(111) under ultra-high vacuum conditions has been investigated by medium energy ion scattering (MEIS). 100 keV He+ MEIS measurements provide a direct confirmation of a previous report, based on thermal desorption, that the growth of multilayer films of Ag2S occurs through a continuous corrosion process. These films show a commensurate (√7 × √7)R19° unit mesh in low energy electron diffraction, consistent with the epitaxial growth of (111) layers of the high-temperature F-cubic phase of Ag2S. The substantial range of co-existing film thicknesses found indicates that the growth must be in the form of variable-thickness islands. The use of 100 keV H+ incident ions leads to a very rapid decrease in the sulphide film thickness with increasing exposure that we attribute to an unusual chemical leaching, with implanted H atoms interacting with S atoms and desorption of H2S from the surface.  相似文献   

3.
Ge ions of 100 keV were implanted into a 120 nm-thick SiO2 layer on n-Si at room temperature while those of 80 keV were into the same SiO2 layer on p-Si. Samples were, subsequently, annealed at 500°C for 2 h to effectively induce radiative defects in the SiO2. Maximum intensities of sharp violet photoluminescence (PL) from the SiO2/n-Si and the SiO2/p-Si samples were observed when the samples have been implanted with doses of 1×1016 and 5×1015 cm−2, respectively. According to current–voltage (IV) characteristics, the defect-related samples exhibit large leakage currents with electroluminescence (EL) at only reverse bias region regardless of the type of substrate. Nanocrystal-related samples obtained by an annealing at 1100°C for 4 h show the leakage at both the reverse and the forward region.  相似文献   

4.
This paper reports on the thermo (TL), iono (IL) and photoluminescence (PL) properties of nanocrystalline CaSiO3:Eu3+ (1–5 mol %) bombarded with 100 MeV Si7+ ions for the first time. The effect of different dopant concentrations and influence of ion fluence has been discussed. The characteristic emission peaks 5D07FJ (J=0, 1, 2, 3, 4) of Eu3+ ions was recorded in both PL (1×1011–1×1013 ions cm?2) and IL (4.16×1012–6.77×1012 ions cm?2) spectra. It is observed that PL intensity increases with ion fluence, whereas in IL the peaks intensity increases up to fluence 5.20×1012 ions cm?2, then it decreases. A well resolved TL glow peak at ~304 °C was recorded in all the ion bombarded samples at a warming rate of 5 °C s?1. The TL intensity is found to be maximum at 5 mol% Eu3+ concentration. Further, TL intensity increases sub linearly with shifting of glow peak towards lower temperature with ion fluence.  相似文献   

5.
The damage distributions in Si(1 0 0) surface after 1.0 and 0.5 keV Ar+ ion bombardment were studied using MEIS and Molecular dynamic (MD) simulation. The primary Ar+ ion beam direction was varied from surface normal to glancing angle. The MEIS results show that the damage thickness in 1.0 keV Ar ion bombardment is reduced from about 7.7 nm at surface normal incidence to 1.3 nm at the incident angle of 80°. However, the damage thickness in 0.5 keV Ar ion bombardment is reduced from 5.1 nm at surface normal incidence to 0.5 nm at the incident angle of 80°. The maximum atomic concentration of implanted Ar atoms after 1 keV ion bombardment is about 10.5 at% at the depth of 2.5 nm at surface normal incidence and about 2.0 at% at the depth of 1.2 nm at the incident angle of 80°. However, after 0.5 keV ion bombardments, it is 8.0 at% at the depth of 2.0 nm for surface normal incidence and the in-depth Ar distribution cannot be observable at the incident angle of 80°. MD simulation reproduced the damage distribution quantitatively.  相似文献   

6.
Ionoluminescence (IL) and photoluminescence (PL) spectra for different rare earth ions (Sm3+ and Dy3+) activated YAlO3 single crystals have been induced with 100 MeV Si7+ ions with fluence of 7.81×1012 ions cm?2. Prominent IL and PL emission peaks in the range 550–725 nm in Sm3+ and 482–574 nm in Dy3+ were recorded. Variation of IL intensity in Dy3+ doped YAlO3 single crystals was studied in the fluence range 7.81×1012–11.71×1012 ions cm?2. IL intensity is found to be high in lower ion fluences and it decreases with increase in ion fluence due to thermal quenching as a result of an increase in the sample temperature caused by ion beam irradiation. Thermoluminescence (TL) spectra were recorded for fluence of 5.2×1012 ions cm?2 on pure and doped crystals at a warming rate of 5 °C s?1 at room temperature. Pure crystals show two glow peaks at 232 (Tg1) and 328 °C (Tg2). However, in Sm3+ doped crystals three glow peaks at 278 (Tg1), 332 (Tg2) and 384 °C (Tg3) and two glow peaks at 278 (Tg1) and 331 °C (Tg2) in Dy3+ was recorded. The kinetic parameters (E, b s) were estimated using glow peak shape method. The decay of IL intensity was explained by excitation spike model.  相似文献   

7.
A multilayer sample (C (23.3 nm)/Ta (26.5 nm)/C (22.7 nm)/Si substrate) was submitted to AES depth profiling by Ar+ ions of energy 1 keV and angles of incidence of 72°, 78°, and 82°. The shapes of the as-measured depth profiles were strongly different emphasizing that the ion-bombardment conditions strongly affects the shapes of measured depth profiles. We simulated the depth profile measured at an angle of incidence of 72° by calculating the backscattering factor, applying attenuation lengths available in the literature, and simulating the ion-bombardment-induced specimen alteration with a TRIDYN simulation and a trial and error method. The good agreement between the calculated and measured depth profiles justified the method applied.  相似文献   

8.
9.
Efficient infrared emissions near the second telecommunication window in Ho3+-doped multicomponent heavy-metal gallate (MHG) glasses have been observed. The maximum stimulated emission cross-sections are calculated to be 2.94×10?21 and 2.08×10?21 cm2 for 1200 and 1390 nm emissions, respectively. Excitation spectra reveal that the 642 and 538 nm wavelengths are practical pumping conditions for 1.2 and 1.39 μm emissions, respectively. Gain cross-sections are evaluated and positive gain bands have been anticipated. The theoretical gain results indicate that the appealing infrared emissions near the second telecommunication window from Ho3+-doped MHG glasses with low maximum phonon energy of ~660 cm?1 make them attractive in developing ~1.2 μm and E-band (1360–1460 nm) optical amplifiers.  相似文献   

10.
Phosphorus irradiation at a low energy (50 keV) and at a dosage of 8×1014 ions/cm2 was carried out on 〈002〉 ZnO films grown by using a pulsed laser deposition technique (Sample A). Subsequent rapid thermal annealing at 650 °C and 750 °C was performed to remove defects resulting from the irradiation (samples B and C, respectively). Atomic force microscopy was used to determine the root mean square roughness, which was 10.07, 8.66, and 9.31 nm for samples A, B, and C, respectively. Low-temperature photoluminescence measurements revealed increased deep-level defect peaks following irradiation; however, the subsequent annealing minimized the defects. Although the dominant donor-bound exciton peak verifies the n-type conductivity of the films, the free–electron–to–acceptor and donor-to-acceptor pair peaks in the irradiated samples confirm an increase in acceptor concentration.  相似文献   

11.
100 keV H+ scattering has been used to investigate the structure of the methylthiolate/Au(111) interface in the Au(111)(√3 × √3)R30° phase. Adsorption of the thiolate onto the clean Au(111) surface leads to a large drop in the scattered ion yield due to the lifting of the clean surface ‘herring-bone’ reconstruction, but the thiolate-covered surface shows an ion yield higher than that of an unreconstructed Au(111) surface, providing direct evidence of a significant number of Au atoms that are displaced from their bulk-terminated positions at the buried interface. Simulations for two different Au adatoms models at the interface, namely, the Au-adatom-monothiolate (AAM) and Au-adatom-dithiolate (AAD) models, show significant sensitivity to the exact values of interlayer spacings and atomic vibrational amplitudes, but the comparison with experimental results appears to favour the AAD model with 0.17 ML Au adatoms in bridging sites at the interface.  相似文献   

12.
Fast neutral atoms and molecules with energies from 0.4 up to 3 keV are scattered under a grazing angle of incidence from a clean and flat MgO(001) surface. For “axial surface channeling” conditions, we observe defined diffraction patterns in the angular intensity distributions for scattered 3He and 4He atoms as well as H2 molecules. The diffraction patterns are analyzed in terms of semiclassical trajectory calculations making use of projectile surface interaction potentials derived from density functional theory and from pair potentials calculated from Hartree–Fock wave functions. From comparison of measured and calculated diffraction patterns we deduced the rumpling of the topmost surface layer of MgO(001), i.e. an inward shift of Mg2+ ions with respect to O2? ions, of (0.03±0.03) Å.  相似文献   

13.
Continuous-time photoelectron spectroscopy (PES) and photon-exposure-dependent photon-stimulated desorption (PSD) were employed to investigate the monochromatic soft X-ray-induced dissociation of SF6 molecules adsorbed on Si(111)-7 × 7 at 30 K (SF6 dose = 3.4 × 1013 molecules/cm2, ~ 0.5 monolayer). The photon-induced evolution of adsorbed SF6 was monitored at photon energies of 98 and 120 eV [near the Si(2p) edge], and sequential valence-level PES spectra made it possible to deduce the photolysis cross section as a function of energy. It was found that the photolysis cross sections for 98 and 120 eV photons are ~ 2.7 × 10? 17 and ~ 3.7 × 10?17 cm2, respectively. The changes in the F? and F+ PSD ion yields were also measured during irradiation of 120 eV photons. The photon-exposure dependencies of the F? and F+ ion yields show the characteristics: (a) the dissociation of adsorbed SF6 molecules is ascribable to the substrate-mediated dissociations [dissociative attachment (DA) and dipolar dissociation (DD) induced by the photoelectrons emitting from the silicon substrate]; (b) at early stages of photolysis, the F? yield is mainly due to DA and DD of the adsorbed SF6 molecules, while at high photon exposure the F? formation by electron capture of the F+ ion is likely to be the dominant mechanism; (c) the F+ ion desorption is associated with the bond breaking of the surface SiF species; (d) the surface SiF is formed by reaction of the surface Si atom with the fluorine atom or F? ion produced by scission of S–F bond of SFn (n = 1–6) species.  相似文献   

14.
ABSTRACT

Tungsten (W) has been regarded as one of the most promising plasma facing materials (PFMs) in fusion reactors. The formation of bubbles and blisters during hydrogen (H) irradiation will affect the properties of W. The dependence of implantation conditions, such as fluence and energy, is therefore of great interest. In this work, polycrystalline tungsten samples were separated into two groups for study. The thick samples were implanted by 18?keV H3+ ions to fluences of 1?×?1018, 1?×?1019 and 1?×?1020 H+/cm2, respectively. Another thick sample was also implanted by 80?keV H2+ ions to a fluence of 2?×?1017 H+/cm2 for comparison. Moreover, the thin samples were implanted by 18?keV H3+ ions to fluences of 9.38?×?1016, 1.88?×?1017 and 5.63?×?1017 H+/cm2, respectively. Focused ion beam (FIB) combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for micro-structure analysis, while time-of-flight ion mass spectrometry (ToF-SIMS) was used to characterize the H depth profile. It is indicated that bubbles and blisters could form successively with increasing H+ fluence. H bubbles are formed at a fluence of ~5.63?×?1017 H+/cm2, and H blisters are formed at ~1?×?1019 H+/cm2 for 18?keV H3+ implantation. On the other hand, 80?keV H2+ ions can create more trapping sites in a shallow projected range, and thus enhancing the blisters formation with a relatively lower fluence of 2?×?1017?H+/cm2. The crack-like microstructures beneath the blisters are also observed and prefer to form on the deep side of the implanted range.  相似文献   

15.
Hydrogen peroxide (H2O2) and hydroperoxy (HO2) reactions present in the H2O2 thermal decomposition system are important in combustion kinetics. H2O2 thermal decomposition has been studied behind reflected shock waves using H2O and OH diagnostics in previous studies (Hong et al. (2009) [9] and Hong et al. (2010) [6,8]) to determine the rate constants of two major reactions: H2O2 + M  2OH + M (k1) and OH + H2O2  H2O + HO2 (k2). With the addition of a third diagnostic for HO2 at 227 nm, the H2O2 thermal decomposition system can be comprehensively characterized for the first time. Specifically, the rate constants of two remaining major reactions in the system, OH + HO2  H2O + O2 (k3) and HO2 + HO2  H2O2 + O2 (k4) can be determined with high-fidelity.No strong temperature dependency was found between 1072 and 1283 K for the rate constant of OH + HO2  H2O + O2, which can be expressed by the combination of two Arrhenius forms: k3 = 7.0 × 1012 exp(550/T) + 4.5 × 1014 exp(?5500/T) [cm3 mol?1 s?1]. The rate constants of reaction HO2 + HO2  H2O2 + O2 determined agree very well with those reported by Kappel et al. (2002) [5]; the recommendation therefore remains unchanged: k4 = 1.0 × 1014 exp(?5556/T) + 1.9 × 1011+exp(709/T) [cm3 mol?1 s?1]. All the tests were performed near 1.7 atm.  相似文献   

16.
《Solid State Ionics》2006,177(26-32):2575-2579
Swift heavy ion irradiation of P(VDF–HFP)–(PC + DEC)–LiClO4 gel polymer electrolyte system with 48 MeV Li3+ ions having five different fluences was investigated with a view to increase the Li+ ion diffusivity in the electrolyte. Irradiation with swift heavy ion (SHI) shows enhancement of conductivity at lower fluences and decrease in conductivity at higher fluences with respect to unirradiated polymer electrolyte films. Maximum room temperature (303 K) ionic conductivity is found to be 2.2 × 10 2 S/cm after irradiation with fluence of 1011 ions/cm2. This interesting result could be ascribed to the fluence-dependent change in porosity and to the fact that for a particular ion beam with a given energy higher fluence provides critical activation energy for cross-linking and crystallization to occur, which results in the decrease in ionic conductivity. The XRD results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤ 1011 ions/cm2) and increase in crystallinity at high fluences (> 1011 ions/cm2). The scanning electron micrographs (SEM) exhibit increased porosity of the polymer electrolyte films after low fluence ion irradiation.  相似文献   

17.
Polymer electrolyte membranes consisting of a novel hyperbranched polyether PHEMO (poly(3-{2-[2-(2-hydroxyethoxy) ethoxy] ethoxy}methyl-3′-methyloxetane)), PVDF-HFP (poly(vinylidene fluoride-hexafluoropropylene)) and LiTFSI have been prepared by solution casting technique. X-ray diffraction of the PHEMO/PVDF-HFP polymer matrix and pure PVDF-HFP revealed the difference in crystallinity between them. The effect of different amounts of PVDF-HFP and lithium salts on the conductivity of the polymer electrolytes was studied. The ionic conductivity of the prepared polymer electrolytes can reach 1.64 × 10? 4 S·cm? 1 at 30 °C and 1.75 × 10? 3 S·cm? 1 at 80 °C. Thermogravimetric analysis informed that the PHEMO/PVDF-HFP matrix exhibited good thermal stability with a decomposition temperature higher than 400 °C. The electrochemical experiments showed that the electrochemical window of the polymer electrolyte was around 4.2 V vs. Li+/Li. The PHEMO/PVDF-HFP polymer electrolyte, which has good electrochemical stability and thermal stability, could be a promising solid polymer electrolyte for polymer lithium ion batteries.  相似文献   

18.
The surface composition of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM] [PF6]) and 1-butyl-3-methylimidazolium dicyanamide ([BMIM] [DCA]) are studied by high-resolution Rutherford backscattering spectroscopy. Although [BMIM] [PF6] is almost stoichiometric up to the topmost molecular layer, considerable deviation from the theoretical stoichiometry is observed for [BMIM] [DCA] in a surface layer of ~1.5 nm thickness. Nitrogen is almost completely depleted in this layer while carbon is enhanced. In addition, there are oxygen impurities of ~3 × 1014 atoms/cm2 in this surface layer. With the help of X-ray photoelectron spectroscopy measurements it is concluded that the surface of [BMIM] [DCA] is covered by ~1.7 × 1014 molecules/cm2 of esters and/or carboxylic acids. These contaminant molecules have a preferred orientation, i.e. the carbonyl groups are on the surface of [BMIM] [DCA] and the alkyl chains are pointing towards vacuum. The origin of the contamination layer could be the surface segregation of bulk impurities.  相似文献   

19.
Nanoparticles of Mg2SiO4:Eu3+ have been prepared by the solution combustion technique and the grain size estimated by PXRD is found to be in the range 40–50 nm. Ionoluminescence (IL) studies of Mg2SiO4:Eu3+ pellets bombarded with 100 MeV Si8+ ions with fluences in the range 1.124–22.48×1012 ions cm?2 are carried out at IUAC, New Delhi, India. Five prominent IL bands with peaks at 580 nm, 590 nm, 612 nm, 655 nm and 705 nm are recorded. These characteristic emissions are attributed to the luminescence centers activated by Eu3+ cations. It is found that IL intensity decreases rapidly in the beginning. Later on, the intensity decreases slowly with further increase of ion fluence. The reduction in the ionoluminescence intensity with increase of ion fluence might be attributed to degradation of Si–O (ν3) and Si–O (2ν3) bonds present on the surface of the sample. The red emission with peak at 612 nm is due to characteristic emission of 5D07F2 of the Eu3+ cations. Thermoluminescence (TL) studies of Mg2SiO4:Eu3+ pellets bombarded with 100 MeV Si8+ cations with fluences in the range 5×1011 ions cm?2 to 5×1013 ions cm?2 are made at RT. Two prominent and well resolved TL glows with peaks at ~220 °C and ~370 °C are observed. It is observed that TL intensity increases with increase of ion fluence. This might be due to creation of new traps during swift heavy ion irradiation.  相似文献   

20.
A trace amount (0.5 mol%) of CuO-doped 40Li2O–32Nb2O5–28SiO2 glass (mol%) exhibits the formation of copper metal layers at the glass surface by annealing at temperatures (530 °C) below the glass transition temperature (544 °C) in the reduced atmosphere of 7% H2–93%Ar. The coordination state of copper ions is examined from optical absorption and Fourier transform infrared (FT-IR) spectrum measurements, indicating the formation of Si–OH and Si–H bonds due to the diffusion of hydrogen into the inside of the glass and the reduction of Cu+ and Cu2+ ions. The mechanism of the formation of copper metals at the surface is proposed, in which the key points are the reduction of Cu2+ to Cu+ ions due to the hydrogen and the migration of Cu+ ions in the interior of the glass to the surface. The first finding on copper metal layers at the glass surface might have a potential for practical applications such as electrodes in glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号