首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
It is demonstrated that the vertical charge transport in a superlattice is influenced uniquely by the difference in the effective mass of the electron between its adjacent layers. The mass difference produces a coupling between the parallel and vertical motions of the electron. As a consequence, the vertical velocity of an electron depends not only on its wavevector in the vertical direction but also on the wavevector in the direction parallel to the layers. As an illustration of the effect, a qualitative analysis is made to show that the vertical motion of the electron wavepacket can be altered by the application of a magnetic field whose direction is normal to the layers.  相似文献   

2.
The spatial coherence of an atomic wavepacket can be detected in scattered photons, even when the center-of-mass motion is in the quantum coherent superposition of two distant, nonoverlapping wavepackets. Spatial coherence manifests itself in the power spectrum of the emitted photons, whose spectral components can exhibit interference fringes as a function of the emission angle. The contrast and the phase of this interference pattern provide information about the quantum state of the center of mass of the scattering atom.  相似文献   

3.
An elementary particle is described as a spherically symmetric solution of the Klein-Gordon equation and the Einstein equations of general relativity. It is found that it has a mass of the order of the Planck mass. If one assumes that the motion of its center of mass is determined by the Dirac equations, then it has a spin of 1/2.  相似文献   

4.
《中国物理 B》2021,30(6):60310-060310
We have investigated the dynamics of bright solitons in a spin–orbit coupled spin-1 Bose–Einstein condensate analytically and numerically. By using the hyperbolic sine function as the trial function to describe a plane wave bright soliton with a single finite momentum, we have derived the motion equations of soliton's spin and center of mass, and obtained its exact analytical solutions. Our results show that the spin–orbit coupling couples the soliton's spin with its center-of-mass motion, the spin oscillations induced by the exchange of atoms between components result in the periodical oscillation of center-of-mass, and the motion of center of mass of soliton can be viewed as a superposition of periodical and linear motions. Our analytical results have also been confirmed by the direct numerical simulations of Gross–Pitaevskii equations.  相似文献   

5.
By solving the time-dependent Schrödinger equation, we have studied the quantum transport of a wavepacket in a GaAs/AlGaAs heterostructure barrier varactor (HBV) diode induced by an ac bias. The current conduction of a wavepacket is complicated due to the superposition of many different stationary states. When the oscillating frequency of the external bias is relatively low, the motion of the wavepacket follows the electric field induced by the external bias. When the frequency is too high (over 1000 GHz for the GaAs/AlGaAs HBV structure under investigation), the wavepacket becomes effectively confined by the oscillating bias, and the conduction current is significantly reduced.  相似文献   

6.
In the present work, we develop a method to derive the anomalous velocity of a spinning electron. From Dirac equation, the relationships among the expectation values of the Pryce’s mass-center operator, the position operator, the spin operator and the canonical momentum operator are investigated. By requiring that the center of mass for a classical spinning electron is related to the expectation value of Pryce’s mass-center operator, one can obtain a classical expression for the position of the electron. With the classical equations of motion, the anomalous velocity of a spinning electron can be easily obtained. It is shown that two factors contribute to the anomalous velocity: one is dependent on the selection of Pryce’s mass-center operators and the other is a type-independent velocity expressed by the rotational velocity and the Lorentz force.  相似文献   

7.
In order to investigate formation process of electronic quantum states in a confined system, we simulate motion of a wavepacket state and show how an eigenstate is formed due to coherence of electronic wave from the viewpoint that an eigenstate arises as a result of self-interference of a moving electron. Numerical results for a Hénon–Heiles potential in which chaotic motion can occur in the classical mechanics indicate that electronic eigenstates can arise even when motion of an electron is non-periodic. The results show that, in the quantum mechanics, periodicity is unnecessary for the formation of eigenstates.  相似文献   

8.
In the foundation of quantum mechanics, the spatial dimensions of electron wavepacket are understood only in terms of an expectation value – the probability distribution of the particle location. One can still inquire how the quantum electron wavepacket size affects a physical process. Here we address the fundamental physics problem of particle–wave duality and the measurability of a free electron quantum wavepacket. Our analysis of stimulated radiative interaction of an electron wavepacket, accompanied by numerical computations, reveals two limits. In the quantum regime of long wavepacket size relative to radiation wavelength, one obtains only quantum-recoil multiphoton sidebands in the electron energy spectrum. In the opposite regime, the wavepacket interaction approaches the limit of classical point-particle acceleration. The wavepacket features can be revealed in experiments carried out in the intermediate regime of wavepacket size commensurate with the radiation wavelength.  相似文献   

9.
We study the effects of the electromagnetic subvacuum fluctuations on the dynamics of a nonrelativistic charged particle in a wavepacket. The influence from the quantum field is expected to give an additional effect to the velocity uncertainty of the particle. In the case of a static wavepacket, the observed velocity dispersion is smaller in the electromagnetic squeezed vacuum background than in the normal vacuum background. This leads to the subvacuum effect. The extent of reduction in velocity dispersion associated with this subvacuum effect is further studied by introducing a switching function. It is shown that the slow switching process may make this subvacuum effect insignificant. We also point out that when the center of the wavepacket undergoes non-inertial motion, reduction in the velocity dispersion becomes less effective with its evolution, no matter how we manipulate the nonstationary quantum noise via the choice of the squeeze parameters. The role of the underlying fluctuation–dissipation relation is discussed.  相似文献   

10.
Emergence of classicality from quantum mechanics, a hotly debated topic, has had no satisfactory resolution so far. Various approaches including decoherence and gravitational interactions have been suggested. In the present work, the Schrödinger–Newton model is used to study the role of semi-classical self-gravity in the evolution of massive spin-1/2 particles in a Stern-Gerlach experiment. For small mass, evolution of the initial wavepacket in a spin superposition shows a splitting in the magnetic field gradient into two trajectories as in the standard Stern–Gerlach experiment. For larger mass, the deviations from the central path are less than in the standard Stern–Gerlach case, while for high enough mass, the wavepacket does not split, and instead follows the classical trajectory for a magnetic moment in inhomogeneous magnetic field. This indicates the emergence of classicality due to self-gravitational interaction when the mass is increased. In contrast, decoherence which is a strong contender for emergence of classicality, leads to a mixed state of two trajectories corresponding to the spin-up and spin-down states, and not the classically expected path. The classically expected path of the particle probably cannot be explained even in the many-worlds interpretation of quantum mechanics. Stern–Gerlach experiments in the macroscopic domain are needed to settle this question.  相似文献   

11.
When electrons are interacting with a ferromagnetic material, their spin-polarization vector is expected to move. This spin motion, comprising an azimuthal precession and a polar rotation about the magnetization direction of the ferromagnet, has been studied in spin-polarized electron scattering experiments both in transmission and reflection geometry. In this review we show that electron-spin motion can be considered as a new tool to study ferromagnetic films and surfaces and we discuss its application to a number of different problems: (a) the transmission of spin-polarized electrons across ferromagnetic films, (b) the influence of spin-dependent gaps in the electronic band structure on the spin motion in reflection geometry, (c) interference experiments with spin-polarized electrons and (d) the influence of lattice relaxations in ferromagnetic films on the spin motion.  相似文献   

12.
We develop an effective theory to study the skyrmion dynamics in the presence of a hole (removed spins from the lattice) in Néel ordered two-dimensional antiferromagnets with arbitrary spin value S. The general equation of motion for the “mass center” of this structure is obtained. The frequency of small amplitude oscillations of pinned skyrmions around the defect center is calculated. It is proportional to the hole size and inversely proportional to the square of the skyrmion size.  相似文献   

13.
刘东奇  常彦春  刘刚钦  潘新宇 《物理学报》2013,62(16):164208-164208
通过电子注入的方法制备了含氮空位色心单光子源的金刚石荧光纳米颗粒. 自旋回声测试结果表明, 纳米颗粒中氮空位色心的相干时间T2很短, 介于0.86 μs至5.6 μs之间. Ramsey干涉条纹测试结果表明, 氮空位色心NV1点的退相干时间T2* 最大, 为0.7 μs, 其电子自旋共振谱可分辨的最小线宽为1.05 MHz. 并且NV1点的电子自旋共振谱可分辨氮空位色心本身的14N核自旋与 氮空位色心电子自旋之间的2.2 MHz超精细相互作用, 这对于在金刚石纳米颗粒中实现核自旋的操控和多个量子比特的门操作具有重要意义. 关键词: 纳米颗粒 氮空位色心 电子自旋  相似文献   

14.
时间分辨光电离是揭示多原子分子激发态动力学的一种强有力的实验方法.根据收集信号的种类,可以采用不同的测量方法:时间分辨离子产率谱(TR-IYS)和时间分辨光电子成像(TR-PEI).本文综述介绍了光电离测量与电子结构的基本概念,以及在实验上区分不同几何结构之间的振荡波包运动的几个重要研究工作,并举例说明飞秒TR-IYS和TR-PEI是如何被用来探测激发态势能面上相干振动波包的演化过程.  相似文献   

15.
从铁磁畴的能量方程出发,利用正则量子化方法和么正变换技术,解析地求得了磁畴量子化运动的波函数。结果表明,即令磁畴的本征频率与外加周期驱动场频率不一致,磁畴的运动仍能表现出精确共振行为。另外,磁畴量子化运动的涨落只受阻尼力的影响,而完全与外加周期驱动场无关。  相似文献   

16.
Following the approach of Adamo–Newman–Kozameh (ANK) we derive the equations of motion for the center of mass and intrinsic angular moment for isolated sources of gravitational waves in axially symmetric spacetimes. The original ANK formulation is generalized so that the angular momentum coincides with the Komar integral for a rotational Killing symmetry. This is done using the Winicour–Tamburino Linkages which yields the mass dipole-angular momentum tensor for the isolated sources. The ANK formalism then provides a complex worldline in a fiducial flat space to define the notions of center of mass and spin. The equations of motion are derived and then used to analyse a very simple astrophysical process where only quadrupole and octupole contributions are included. The results are then compared with those coming from the post newtonian approximation.  相似文献   

17.
The possible contact between rotor and stator is considered a serious malfunction that may lead to catastrophic failure. Rotor rub is seen as a secondary phenomenon caused by a primary source, i.e. sudden mass unbalance, instabilities generated by aerodynamic and hydrodynamic forces in seals and bearings among others. The contact event gives rise to normal and friction forces exerted on the rotor at impact events. The friction force plays a significant role by transferring some rotational energy of the rotor to lateral motion. A mathematical model has been developed to capture this for a conventional backup annular guide setup. It is reasonable to superpose an impact condition to the rub, where the rotor spin energy can be fully transformed into rotor lateral movements. Using a nonideal drive, i.e. an electric motor without any kind of velocity feedback control, it is even possible to stop the rotor spin under rubbing conditions. All the rotational energy will be transformed in a kind of “self-excited” rotor lateral vibration with repeated impacts against the housing. This paper studies the impact motion of a rotor impacting a conventional backup annular guide for the case of dry and lubricated inner surface of the guide. For the dry surface case, the experimental and numerical analysis shows that the rotational energy is fully transformed into lateral motion and the rotor spin is stopped. Based on this study this paper proposes a new unconventional backup bearing design in order to reduce the rub related severity in friction and center the rotor at impact events. The analysis shows that the rotor at impacts is forced to the center of the backup bearing and the lateral motion is mitigated. As a result of this, the rotor spin is kept constant.  相似文献   

18.
It is proved that the post-Newtonian general relativistic center of rest mass of a bounded physical system composed of a number of bodies characterized by finite dimensions, arbitrary internal structure, and arbitrary internal motions cannot in general move uniformly, contrary to what was conventionally accepted up to now. Mathematical expressions are derived and discussed describing, in terms of the above characteristics of the bodies, the position and velocity vectors of the center of rest mass of the system and the force, which is responsible for its nonuniform motion, with respect to the uniformly moving post-Newtonian general relativistic center of inertial mass of the physical system. In the special case of a binary star it is shown that the center of rest mass should describe, around the uniformly moving center of inertial mass, an ellipse of the same period and eccentricity as those of the Newtonian elliptical orbit of the relative motion. The length of the axes of this ellipse depends on the internal characteristics of the members of the binary star, and the motion of the center of rest mass becomes important when these characteristics are strong enough. Finally, it is proved that in every effort for describing theoretically a binary system, the internal characteristics of the members of which are ignored, and for accurate measurements of their positions and velocities, the above fictitious motion of the center of rest mass has to be taken into account; otherwise, the results of the measurements will not be consistent with the theoretical predictions.  相似文献   

19.
We consider an isolated system made of two pointlike bodies interacting at a distance in the nonradiative approximation. Our framework is the covariant and a priori Hamiltonian formalism of “predictive relativistic mechanics”, founded on the equal-time condition. The center of mass is rather a center of energy. Individual energies are separately conserved and the meaning of their positivity is discussed in terms of world-lines. Several results derived decades ago under restrictive assumptions are extended to the general case. Relative motion has a structure similar to that of a nonrelativistic one-body motion in a stationary external potential, but its evolution parameter is generally not a linear function of the center-of-mass time, unless the relative motion is circular (in this latter case the motion is periodic in the center-of-mass time). Finally the case of an extreme mass ratio is investigated. When this ratio tends to zero the heavy body coincides with the center of mass provided that a certain first integral, related to the binding energy, is not too large.  相似文献   

20.
The dynamics of wavepacket propagation on a double circular 2-dimensional cone has been studied. The fast transition of the wavepacket from the conical well onto the conical peak is interpreted in terms of the semiclassical picture which uses the notion of the transition probability in the region of closest approach of the packet to the apex of the cone. It is shown that a simple surface hopping approximation predicts correctly the decay probability over times longer than the period of motion in the conical well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号