首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
We report a first-principles study of structural, mechanical and optoelectronic properties of the Sn3X4 (X = P, As, Sb, Bi) compounds. The calculations were performed using the full-potential linearized augmented plane wave approach (FP-LAPW). The structural and mechanical properties of Sn3X4 (X = P, As, Sb, Bi) compounds were obtained using GGA-PBE. In addition, The Tran-Blaha modified Becke-Johnson exchange potential (TB-mBJGGA) technique was used to calculated the optoelectronic properties. The calculated electronic band structures and density of states reveal a direct band gap at Γ points varied from 0.11 eV to 1.23 eV for X = P, As, Sb, Bi. The optical absorption calculations show that all compounds have high absorption coefficients about twenty times greater than that of CuInSe2 and CdTe in the visible region. The high absorption of these materials could be attributed to the localized p-states of cation (X = P, As, Sb, Bi) in the lower region of the conduction band.  相似文献   

2.
《Current Applied Physics》2018,18(3):280-288
The structural, elastic, thermodynamic and electronic properties of the Ti15−xMoxSn compounds were systematically investigated by means of first-principles calculations based on the density functional theory (DFT). The calculated results demonstrate the Ti15−xMoxSn compounds still remain the stable β phase structure. The calculation of cohesive energy shows that the structural stability of the Ti15−xMoxSn compounds increases apparently with the increase of Mo content. According to Hooke's law, the single crystal elastic constants were obtained and show that all the calculated compounds keep mechanical stability. Then the bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν of polycrystalline aggregates were calculated at zero pressure. The calculated results show that among these Ti15−xMoxSn compounds, Ti4Mo11Sn exhibits the largest stiffness while Ti12Mo3Sn shows the greatest ductility. The compounds Ti12Mo3Sn and Ti11Mo4Sn with the two lowest elastic Young's modulus of 61.01 GPa and 65.59 GPa are expected to be promising metallic biomaterials for implant applications. Besides, the Debye temperature ΘD and the electronic density of states (DOS) are also investigated and discussed.  相似文献   

3.
Synthesis and structural details of MSr2RECu2Oz (M-1212) compounds with M = Ga, Nb, Fe, Al and Co) and RE = Eu, Y are reported. Reitveld refinement of X-ray diffraction (XRD) patterns shows that all compounds are crystallized in single phase. Nb-, Fe- and Al-1212 possess tetragonal P4/mmm space group structure while the Ga-1212 and Co-1212 are crystallized in orthorhombic Ima2 space group. The change of space group from P4/mmm to Ima2 indicating towards the doubling of unit cell. The buckling angle [Cu(2)–O(2)–Cu(2) angle] shows that most of the studied samples are heavily under doped and hence they could not exhibit superconductivity. Thermogravimetric (TGA) analysis shows the M-1212 compounds to be more stable than widely studied 90 K superconductor Cu-1212 (RE-123).  相似文献   

4.
We have performed a first principle study of structural and phase stabilization of β-La2 ? xLxMo2O9 (L = Gd, Sm, Nd and Bi) and β-La2Mo2 ? yMyO9 (M = Cr, W). The substitutional-site properties were discussed in terms of the empirical parameter, bond valence sums (BVS), which characterizes the interactions between atoms and its nearest-neighbor atoms and correlates well with the stability of the structure. We found that Gd, Sm and Nd atoms prefer the crystallographic sites with largest BVS values. The nonlinear dependence of cell parameter on W content in W-doped systems results from the nonlinear change in Mo/W–O bond length with W content. The decrease of cohesive energy and the deviation of BVS values from the expected values upon the Gd, Sm, Nd and W-doped concentration help us understand the experimentally observed stabilization of the β phase to lower temperatures in these doped system. The O ion diffusion properties in W-doped systems have been studied using the nudged elastic band method and the dimer method. We found that, W-doping leads to the obvious increase in the energy barriers of O ion concerted diffusion. In addition, there is a remarkable decrease in the difference of energy barriers between two diffusion channels involving O(1) ion, which sheds light on only one relaxation peak in the mechanical relaxation measurement in W-doped system, compared to undoped system.  相似文献   

5.
Niobium films on sapphire were reacted in tin-vapour to Nb3Sn with resistance ratiosR(297 K)/R(18.3 K) up to 6 and resistively measured superconducting transition temperaturesT c up to 17.93 K. The composition Nb3+z Sn1–z H x of electrolytically hydrogenated samples was determined depth dependent by Rutherford backscattering of 30 MeV32S and simultaneous detection of recoiled protons. Considerable concentration gradients in the thin layers (0.27 m) were detected. The increase of resistivity with hydrogen content and the change in the temperature dependence of is analyzed. A correlation betweenT c and 0= is found: An increase of T c =0.2 K at 025cm andx0.03 is followed by a drastic decrease toT c <1.1 K at 080cm andx1. TheT c vs. 0 andT c vs. (T) characteristic correlations are different from universal irradiation or preparation induced correlations. The discrepancies can be interpreted by a stiffening of phonon modes and a band-shifting caused by the hydrogen.  相似文献   

6.
T Seddik  G U&#  ur  R Khenata  &#  U&#  ur  F Soyalp  G Murtaza  D P Rai  A Bouhemadou  S Bin Omran 《中国物理 B》2016,25(10):107801-107801
In the present work, we investigate the structural, optoelectronic and thermoelectric properties of the YLi3X2(X=Sb, Bi) compounds using the full potential augmented plane wave plus local orbital (FP-APW+lo) method. The exchange-correlation potential is treated with the generalized gradient approximation/local density approximation (GGA/LDA) and with the modified Becke-Johnson potential (TB-mBJ) in order to improve the electronic band structure calculations. In addition, the estimated ground state properties such as the lattice constants, external parameters, and bulk moduli agree well with the available experimental data. Our band structure calculations with GGA and LDA predict that both compounds have semimetallic behaviors. However, the band structure calculations with the GGA/TB-mBJ approximation indicate that the ground state of the YLi3Sb2 compound is semiconducting and has an estimated indirect band gap (Γ-L) of about 0.036 eV while the ground state of YLi3Bi2 compound is semimetallic. Conversely the LDA/TB-mBJ calculations indicate that both compounds exhibit semiconducting characters and have an indirect band gap (Γ-L) of about 0.15 eV and 0.081 eV for YLi3Sb and YLi3Bi2 respectively. Additionally, the optical properties reveal strong responses of the herein materials in the energy range between the IR and extreme UV regions. Thermoelectric properties such as thermal conductivity, electrical conductivity, Seebeck coefficient, and thermo power factors are also calculated.  相似文献   

7.
This paper performs first-principles calculations to study the structural, mechanical and electronic properties of the spinels ZnA1204, ZnGa2O4 and ZnCr2O4, using density functional theory with the plane-wave pseudopotential method. Our calculations are in good agreement with previous theoretical calculations and the available experimental data. The studies in this paper focus on the evolution of the mechanical properties of ZnAl2O4, ZnGa2O4 and ZnCr2O4 under hydrostatic pressure. The results show that the cubic phases of ZnAl2O4, ZnCa2O4 and ZnCr2O4 become unstable at about 50 GPa, 40 GPa and 25 GPa, respectively. From analysis of the band structure of the three compounds at equilibrium volume, it obtains a direct band gap of 4.35 eV for ZnA1204 and 0.89 cV for ZnCr2O4, while ZnGa2O4 has an indirect band gap of 2.73 eV.  相似文献   

8.
First principles calculations based on density functional theory are used to investigate the phase stability, electronic, magnetic and elastic properties of ferromagnetic metallic full-Heusler Ni2CoZ(Z = Ga, Sn) alloys via the FP-LAPW method by the generalized gradient GGA and GGA+U approximations for the exchange and correlation energy, within the Perdew–Burke–Ernzerhof (PBE 96) parameterization. The results of calculating electronic structures and magnetic properties reveal that the both Ni2CoGa and Ni2CoSn crystallize in L21 phase with regular cubic structure. The two investigated compounds exhibit metallic ferromagnetic behaviors for the GGA+U calculation. The computation of elastic constants with GGA+U approach shows that our compounds are mechanically stable.  相似文献   

9.
刘峰  秦晓英  刘冕 《中国物理 B》2009,18(10):4386-4392
Structural phase transitions of Zn4Sb3 and its substitutional compounds (Zn0.98M0.02)4Sb3 (M = Al, Ga and In) are investigated by electrical transport measurement and differential scanning calorimetry below room temperature. The results indicate that both β→α and α→α′ phase transitions of Zn4Sb3 are reversible and exothermic processes, which may be explained as that both the transitions originate from the ordering of the disordered interstitial Zn and vacancies in regular sizes. The derived activation energies of β→α and α→α′ phase transition processes for Zn4Sb3 are E1 = 3.9 eV and E2 = 4.1 eV, respectively. Although no remarkable influence on activation energy E2 is observed after Al doping, Al substitution for Zn causes E1 to increase to 4.6 eV, implying its suppression of βα transition to a great extent. Moreover, it is found that both βα and αα′ transitions are completely prohibited by substitution of either In or Ga for Zn in Zn4Sb3. The underlying mechanisms for these phenomena are discussed.  相似文献   

10.
采用密度泛函理论的B3LYP, B3P86, B1B95, P3PW91和PBE1PBE方法结合SDD, LANL2DZ和CEP-121G基组计算了d~(10)组态二聚物MN(M=Ga, Ge, In, Sn和Sb; N=M和Al)的几何结构.采用B3P86/SDD进一步研究了MN@H_2O团簇的几何结构及吸附能.结果表明,水分子结合在二聚物M_2上时,对二聚物影响较大,对水分子自身影响较小.将M_2中Ga, Ge, In, Sn或Sb替换一个原子为Al时,水分子在GeAl和SnAl上的吸附能变化较大,而在GaAl, InAl和SbAl上吸附能变化较小.另外, H_2O吸附在Ga, Ge, In, Sn和Sb上时,与吸附在Al上时,吸附能的变化不大.  相似文献   

11.
The electronic structures and effective masses of the N mono-doped and Al N, Ga-N, In-N codoped ZnO system have been calculated by a first-principle method, and comparisons among different doping cases are made. According to the results, the impurity states in the codoping cases are more delocalised compared to the N mono-doping case, which means a better conductive behaviour can be obtained by codoping. Besides, compared to the Al-N and Ga-N codoping cases, the hole effective mass of In-N codoped system is much smaller, indicating the p-type conductivity can be more enhanced by In N codoping  相似文献   

12.
The electronic and optical properties of zincblende ZnX(X=S, Se, Te) and ZnX:Co are studied from density functional theory (DFT) based first principles calculations. The local crystal structure changes around the Co atoms in the lattice are studied after Co atoms are doped. It is shown that the Co-doped materials have smaller lattice constant (about 0.6%-0.9%). This is mainly due to the shortened Co-X bond length. The (partial) density of states (DOS) is calculated and differences between the pure and doped materials are studied. Results show that for the Co-doped materials, the valence bands are moving upward due to the existence of Co 3d electron states while the conductance bands are moving downward due to the reduced lattice constants. This results in the narrowed band gap of the doped materials. The complex dielectric indices and the absorption coefficients are calculated to examine the influences of the Co atoms on the optical properties. Results show that for the Co-doped materials, the absorption peaks in the high wavelength region are not as sharp and distinct as the undoped materials, and the absorption ranges are extended to even higher wavelength region.  相似文献   

13.
The electronic and optical properties of α-graphyne sheet are investigated by using densityfunctional theory. The results confirm that α-graphyne sheet is a zero-gap semimetal. Theoptical properties of the α-graphyne sheet such as dielectric function,refraction index, electron energy loss function, reflectivity, absorption coefficient andextinction index are calculated for both parallel and perpendicular electric fieldpolarizations. The optical spectra are strongly anisotropic along these two polarizations.For (Ex), absorption edge is at 0 eV, while there is noabsorption below 8 eV for (Ez).  相似文献   

14.
The dependences of the cohesive (atomization) energy on the interatomic distance for elements Al, Cu, Ti(A2), V, Mg, Ti(A3), Si, and Sn are calculated using methods based on the Thomas-Fermi-Dirac-Gambosh statistical atomic theory. The obtained dependences are approximated by the Mie-Grüneisen potential. The phonon spectra calculated on the basis of the Born-Kärmän model and the Born-Kärmän-Blackman-de Lunay approach are used to determine the temperature dependences of the specific heat, free energy, and internal energy of the elements under investigation. The calculated cohesive energy, equilibrium interatomic distances, and temperature dependences of the specific heat agree with the experimental data.  相似文献   

15.
Single crystals of GdCl3 doped with different concentrations of Ce3+ have been grown using the Bridgman–Stockbarger technique and their luminescence and scintillation properties were investigated. The luminescence spectrum of GdCl3:Ce3+ is complex and consists of two bands with maxima at 350 nm and 370 nm. The maximal light yield in GdCl3:Ce3+ was observed at ~1 mol% of Ce3+ (more than 38 000 ph/MeV).  相似文献   

16.
D.P. Rai 《Phase Transitions》2013,86(7):608-618
We performed the structure optimization followed by the calculation of electronic structure and magnetic properties on Co2MnGe and Co2MnSn. The structure optimization was based on generalized gradient approximation exchange correlation and full potential linearized augmented plane wave (FP-LAPW) method. The calculation of electronic structure was based on FP-LAPW method using local spin density approximation. We have studied the electronic structure and magnetic properties. The calculated density of states and band structures shows the half-metallic ferromagnets character of Co2MnGe and Co2MnSn.  相似文献   

17.
张良  姬广富  赵峰  龚自正 《中国物理 B》2011,20(4):47102-047102
This paper performs first-principles calculations to study the structural,mechanical and electronic properties of the spinels ZnAl2O4 ,ZnGa2O4 and ZnCr2O4 ,using density functional theory with the plane-wave pseudopotential method. Our calculations are in good agreement with previous theoretical calculations and the available experimental data. The studies in this paper focus on the evolution of the mechanical properties of ZnAl2O4 ,ZnGa2O4 and ZnCr2O4 under hydrostatic pressure. The results show that the cubic phases of ZnAl2O4 ,ZnGa2O4 and ZnCr2O4 become unstable at about 50 GPa,40 GPa and 25 GPa,respectively. From analysis of the band structure of the three compounds at equilibrium volume,it obtains a direct band gap of 4.35 eV for ZnAl2O4 and 0.89 eV for ZnCr2O4 ,while ZnGa2O4 has an indirect band gap of 2.73 eV.  相似文献   

18.
《Current Applied Physics》2015,15(5):608-616
The state-of-the-art all-electron FLPAW method and the BoltzTrap software package based on semi-classical theory were adopted to explore the electronic structure and the optical and thermoelectric properties of Ga1−xInxN. Ga1−xInxN is predicted to be a direct band gap material for all values of x. Moreover, the band gap varies between 2.99 eV and 1.95 eV as x changes. Optical parameters such as the dielectric constant, absorption coefficient, reflectivity and refractive index are calculated and discussed in detail. The doping of In plays an important role in the modulation of the optical constants. The static dielectric constant ɛ(0) of Ga1−xInxN was calculated as 3.95, 3.99, 3.99 and 4.03 at x = 0.00, 0.25, 0.50 and 0.75, respectively. The static refractive index is 2.0 for pure Ga1−xInxN at x = 0.00. The thermal properties varied greatly as x fluctuated. The ternary alloy has large values for the Seebeck coefficient and figure of merit at high temperatures and is thus suitable for thermoelectric applications. Pure Ga1−xInxN at x = 0 exhibited ZT = 0.80 at room temperature, and at higher temperatures, the thermal conductivity decreased with increased In doping.  相似文献   

19.
Y.V. Luniakov 《Surface science》2011,605(19-20):1866-1871
The intriguing but yet still unexplained experimental results of Hibino and Ogino [Phys. Rev. B 54, 5763 (1996); Surf. Sci. 328, L547 (1995)], who have observed single defect movement on an Me induced Si(111)3×3 surface, have been revived and theoretically analysed. Using Nudged Elastic Band (NEB) optimization, the minimal energy path for an Si adatom moving on the ideal and vacancy defected surfaces has been obtained and the most probable mechanism of the vacancy mediated single defect diffusion has been established. This mechanism is shown to be responsible for the experimentally observed Si adatom movement and predicts a far easier movement of the Me adatom on vacancy defected Me induced Si(111)3×3 surfaces.  相似文献   

20.
Microstructure, thermal properties and wetting kinetics of Sn–3Ag–xZn solders (x = 0.4, 0.6, 0.8, 1, 2 and 4 wt%) were systematically investigated. The results indicate that a small amount of Zn (Zn wt% ≤ 1 wt%) has a rather moderate effect on the microstructure morphology of the Sn–3Ag–xZn solders. The microstructures are composed of a β-Sn phase and the mixture of Ag3Sn and ζ-AgZn particles. However, the β-Sn phase reduces its volume fraction in the entire microstructure and the intermetallic compounds population increases with the increasing of Zn content. The microstructure is dramatically changed with a further increase in the Zn content. The γ-AgZn phase is formed in a Sn–3Ag–2Zn solder. The ε-AgZn phase is formed in a Sn–3Ag–4Zn solder. The melting temperature and the undercooling of the Sn–3Ag–xZn solder alloys decrease with the increase in Zn content, reach to a minimum value when the content of Zn is 1 wt%, and then increase with further increase in Zn content. The Sn–3Ag–1Zn demonstrates the minimum value of 228.13 °C in the melting temperature and 13.87 °C in undercooling. The wetting kinetics of the main spreading stage features the power law of R n  ~ t (n = 1), which is controlled by chemical reactions at the triple line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号