首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shear properties of brittle and highly porous carbon (graphitic) foam cannot be measured reliably with most standard test methods, such as single rail, double rail, Iosipescu shear, etc. A new testing device has been developed to accurately measure the shear stiffness and strength of carbon foam or other porous materials. Specimens of cylindrical cross section are used to reduce the high stress concentration that normally occurs in the vicinity of the grip section. Since strain gages could not be installed on the specimen surface (due to porosity), the shear strain is determined from the specimen end rotation. A high resolution in the rotational measurement is achieved by using a stepper motor with multiple gear reduction. In view of testing low modulus material, the load cell of the fixture was mounted onto an axial roller to relieve the axial constraint while twisting the specimens. The accuracy of the measurement and calibration of the test fixture has been demonstrated by measuring the shear modulus of two plastic (polyvinyl chloride (PVC) and urethane).  相似文献   

2.
The interaction between the isopescu shear-test specimen and the modified Wyoming shear-test fixture was investigated. This involved three areas of study. First, strip strain gages were applied to the specimen contact surfaces to measure strains induced by the fixture. While it has generally been assumed that the fixture induces an asymmetric load into the specimen, the measured strains indicated a nonasymmetric loading. Second, the effect of an out-of-plane moment, externally applied to the fixture, on gage section shear strains was observed. The shear strains observed were small leading to the conclusion that the fixture is very resistant to out-of-plane moments. Finally, the effect of fixture misalignment on the observed shear modulus was determined. The results indicate that the observed shear modulus increased significantly for slight amounts of misalignment. Therefore, experimental techniques should be modified to include a check for misalignment. Beyond this, it is suggested that the fixture design be modified to prevent misalignment and to achieve an asymmetric loading of the specimen.  相似文献   

3.
Kinetics of deformation and fracture of nickel–iron alloy Inconel 718 under dynamic shear loading was measured using a split torsional Hopkinson bar facility and high-speed photography. Tubular specimens with a reduced gage length and a starter notch were sheared at strain rates up to 6 × 103 s−1. High-speed photographs of fiducial lines scribed on the specimen surface showed the development of local strains and cracking. This paper describes the experimental and analytical procedures, illustrates average and local plastic strain evolution, and presents shear crack initiation times and propagation speeds.  相似文献   

4.
A hybrid experimental-computational procedure to establish accurate true stress-plastic strain curve of sheet metal specimen covering the large plastic strain region using shear compression test data is described. A new shear compression jig assembly with a machined gage slot inclined at 35° to the horizontal plane of the assembly is designed and fabricated. The novel design of the shear compression jig assembly fulfills the requirement to maintain a uniform volume of yielded material with characteristic maximum plastic strain level across the gage region of the Shear Compression Metal Sheet (SCMS) specimen. The approach relies on a one-to-one correlation between measured global load–displacement response of the shear compression jig assembly with SCMS specimen to the local stress-plastic strain behavior of the material. Such correlations have been demonstrated using finite element (FE) simulation of the shear compression test. Coefficients of the proposed correlations and their dependency on relative plastic modulus were determined. The procedure has been established for materials with relative plastic modulus in the range 5?×?10?4?<?(E p /E)?<?0.01. It can be readily extended to materials with relative plastic modulus values beyond the range considered in this study. Nonlinear characteristic hardening of the material could be established through piecewise linear consideration of the measured load–displacement curve. Validity of the procedure is established by close comparison of measured and FE-predicted load–displacement curve when the provisional hardening curve is employed as input material data in the simulation. The procedure has successfully been demonstrated in establishing the true stress-plastic strain curve of a demonstrator 0.0627C steel SCMS specimen to a plastic strain level of 49.2 pct.  相似文献   

5.
This paper documents an experimental study that was conducted to demonstrate the sensitivity of the shear gage to the presence of normal strains. The shear gage is a specially designed strain gage rosette that measures the average shear strain in the test section of notched specimens such as the losipescu, Arcan and compact shear specimens. These specimens can have complicated stress states with high shear and normal strain gradients. To evaluate the sensitivity of the shear gage to normal strains, shear gages were tested on an Arcan specimen. The Arcan specimen is a notched specimen that can be loaded in pure shear (90 deg), pure tension (0 deg) and at intermediate 15- deg increments. The shear modulus for an aluminum specimen was determined at each of these loading angles. It was found that the gages display nearly zero sensitivity to normal strains ( x, y). Moiré interferometry was used to document the shear and normal strain distributions in the test section and to provide an independent method for determining the average shear strain. These results reinforce the robust nature of testing with the shear gage.  相似文献   

6.
A novel Kolsky torsion bar technique is developed and successfully utilized to characterize the high strain rate shear response of a rate-independent end-linked polydimethylsiloxane (PDMS) gel rubber with a shear modulus of about10 KPa. The results show that the specimen deforms uniformly under constant strain rate and the measured dynamic shear modulus follows reasonably well the trend determined by dynamic mechanical analysis (DMA) at lower strain rates. For comparison, Kolsky compression bar experiments are also performed on the same gel material with annular disk specimens. The dynamic moduli obtained from compression experiments, however, are an order of magnitude higher than those obtained by the torsional technique, due to the pressure caused by the radial inertia and end constraints.  相似文献   

7.
Moiré interferometry was used to examine the strain distributions in Arcan-type specimens under shear loading. The compact geometry allowed longitudinal and transverse shear behavior to be considered. The best results for longitudinal moduli were obtained with fibers running from notch to notch. As with the losipescu configuration, strain averaging or correction factors were required for modulus determination in all fiber orientations. None of the bending problems that have been encountered in the losipescu specimen were observed. Some twisting was noticed, but its extent (less than 2 percent) was much less than has been noted in shear testing with losipescu specimens.  相似文献   

8.
A method was developed for testing and characterizing composite materials at strain rates in the 100 to 500 s?1 regime. The method utilizes a thin ring specimen, 10.16 cm (4 in.) in diameter, 2.54 cm (1 in.) wide and 6–8 plies thick. This specimen is loaded by an internal pressure pulse applied explosively through a liquid. Pressure is measured by means of a calibrated steel ring instrumented with strain gages. Strains in the composite specimen are measured with strain gages. Strains in the calibration and specimen rings are recorded with a digital processing oscilloscope. The equation of motion is solved numerically and the data processed by the mini-computer attached to the oscilloscope. Results are obtained, and plotted by an X-Y plotter in the form of a dynamic stress-strain curve. Unidirectional 0-deg, 90-deg and 10-deg off-axis graphite/epoxy rings were tested at strain rates up to 690 s?1. Times to failure ranged between 30 and 60 μs. The 0-deg properties which are governed by the fibers do not vary much from the static ones with only small increases in modulus. The 90-deg properties show much higher than static modulus and strength. The dynamic in-plane shear properties, obtained from the 10-deg off-axis specimens, are noticeably higher than static ones. In all cases the dynamic ultimate strains do not vary much from the static values.  相似文献   

9.
Wood specimens have been tested for compressive loading in the longitudinal direction. Planar deformation was recorded by means of video extensometry on the specimen surfaces. A post processing routine was developed to calculate stress and strain values from the sampled data. The routine made use of mathematical framework used in the finite element method. Material parameters were detected by means of an optimization algorithm, and the determined linear elastic parameters were in general found to be in good agreement with values given in literature. The utilized method offers simultaneous average values for active, passive and shear strains from the measured area. Moduli of elasticity, Poisson’s ratios and shear deformation can thus be evaluated. In addition, the variation of the three strain components over the area is measured. The results can therefore be used for quantification of material inhomogeneity and are further suitable for direct comparison with numerically computed strains comprising non-uniform strain fields. Since video extensometry does not require any physical contact with the specimen, measurements can be undertaken until failure. The present method offers thus an efficient and relatively accurate way to measure and evaluate the material characteristics of anisotropic and inhomogeneous materials like wood.  相似文献   

10.
A finite-difference analysis of the state of stress in a double-notch interlaminar shear strength specimen is developed. The effects of geometry and material parameters on the stress distributions are investigated. It has been found that, in agreement with previous determinations,1–7 a uniform distribution of shear stress on the fracture plane does not exist. The shear stress distribution becomes more uniform for increased material anisotropy and for small (L/T) ratios, whereL is the distance between the notches andT is the specimen thickness. Also, it has been determined that the notch size (W) and the distance from the notches to the loaded ends of the specimen (h) do not influence the stress distributions significantly. The effects of variations in the (L/T) ratio, the notch size (W), and the length (h) were investigated experimentally. For a graphite/epoxy laminate of 0/90-deg square wave it has been found that the apparent shear strength determined by double-notch shear tests decreases significantly with an increase in (L/T) ratio. The decrease in the apparent shear strength with an increase inh, however, is very small. Also, the apparent shear strength is not affected significantly by increasing the notch sizeW.  相似文献   

11.
郑开启  刘钊  秦顺全  周满 《力学学报》2016,48(5):1136-1144
钢筋混凝土梁的挠度计算通常不计入剪切变形的贡献,然而对于斜向开裂的有腹筋混凝土梁,斜裂缝会显著降低梁体的有效剪切刚度,导致剪切变形值显著增大,因此在验算评估时应予以考虑.为评价钢筋混凝土梁斜向开裂后的有效剪切刚度,首先,基于变角桁架模型推导了钢筋混凝土梁在箍筋屈服状态下的有效剪切刚度;与弹性剪切刚度比较发现,剪切刚度退化系数的主要影响因素为材料弹模比、配箍率和斜压杆倾角.其次,基于试验剪切变形曲线表现出的刚度退化规律,提出了可用于不同开裂程度下剪切刚度计算的恒定切线刚度退化模式,并采用开裂后的剪力增量作为反映开裂程度的定量指标.最后,根据最小能量原理得到了剪切刚度退化中两个关键参数:斜压杆倾角和剪切刚度退化系数的解析公式.通过2根薄腹混凝土梁剪切变形试验以及收集的15个受剪梁段的剪切变形数据对模型有效性进行了验证,验证结果表明:有腹筋混凝土梁剪切刚度分析模型能较为准确地预测箍筋屈服状态的剪切刚度,并能反映不同开裂程度下的剪切刚度退化规律.  相似文献   

12.
A special strain gage called the shear gage was developed for composite materials testing with notched shear specimens. The shear-gage records the average shear strain across the entire test section between the notches of the losipescu and compact shear specimens rather than just sampling the shear strain over a small region in the center of the test section. Hence, the shear stress/strain response is obtained by dividing the average shear stress (load divided by the cross-sectional area between the notches) by the average shear strain. By placing gages on both faces of the specimen, accurate and repeatable shear-modulus measurements can be made without prior knowledge of the shear strain or stress distributions. This scheme essentially integrates the shear strain through the entire test section. Knowledge of other material properties is not required to accurately determine shear modulus values. The shear gage was tested on a variety of composite and isotropic materials resulting in more reliable shear modulus determination and less scatter than previously possible.  相似文献   

13.
A two-dimensional finite element model is used to investigate compressive loading of a brittle ceramic. Intergranular cracking in the microstructure is captured explicitly by using a distribution of cohesive interfaces. The addition of confining stress increases the maximum strength and if high enough, can allow the effective material response to reach large strains before failure. Increasing the friction at the grain boundaries also increases the maximum strength until saturation of the strength is approached. Above a transitional strain rate, increasing the rate-of-deformation also increases the strength and as the strain rate increases, fragment sizes of the damaged specimen decrease. The effects of flaws within the specimen were investigated using a random distribution at various initial flaw densities. The model is able to capture an effective modulus change and degradation of strength as the initial flaw density increases. Effects of confinement, friction, and spatial distribution of flaws seem to depend on the crack coalescence and dilatation of the specimen, while strain-rate effects are result of inertial resistance to motion.  相似文献   

14.
Simple shear tests are widely used for material characterization especially for sheet metals to achieve large deformations without plastic instability. This work describes three different shear tests for sheet metals in order to enhance the knowledge of the material behavior under shear conditions. The test setups are different in terms of the specimen geometry and the fixtures. A shear test setup as proposed by Miyauchi, according to the ASTM standard sample, as well as an in-plane torsion test are compared in this study. A detailed analysis of the experimental strain distribution measured by digital image correlation is discussed for each test. Finite element simulations are carried out to evaluate the effect of specimen geometries on the stress distributions in the shear zones. The experimental macroscopic flow stress vs. strain behavior shows no significant influence of the specimen geometry when similar strain measurements and evaluation schemes are used. Minor differences in terms of the stress distribution in the shear zone can be detected in the numerical results. This work attempts to give a unique overview and a detailed study of the most commonly used shear tests for sheet metal characterization. It also provides information on the applicability of each test for the observation of the material behavior under shear stress with a view to material modeling for finite element simulations.  相似文献   

15.
Stereo vision is used to measure the strain field of a round tension test specimen in a cylindrical coordinate system. Initially, the displacement fields of the specimen are measured relative to a world coordinate system erected by the stereo vision. Through coordinate transformations, the measured displacement fields expressed in world coordinates are then converted to the displacement fields expressed in cylindrical coordinates. By differentiating the axial and circumferential displacements in the axial and circumferential directions, the axial, circumferential and shear strains are determined. Results indicate that the measured mean value of the axial strains is in good agreement with the measurements of the extensometer and the strain gage. The Poisson's ratio obtained by the circumferential and axial strains is close to .33 in the elastic state. The mean error of the computed shear strain is approximately .03 percent in the smaller elastic deformation and .08 percent in the larger plastic deformation.  相似文献   

16.
一种用于材料高应变率剪切性能测试的新型加载技术   总被引:4,自引:0,他引:4  
高应变率下的冲击剪切实验技术是材料动态力学行为及其微观机理研究的重要基础.采用分离式霍普金森压杆(split Hopkinson pressure bar)装置一般可以获得材料在104s-1以内应变率的动态力学性能.在超过104s-1的应变率下对材料进行冲击剪切测试时,通常需要采用高速压剪飞片技术或由气炮发射子弹对试样进行直接加载.本文提出一种可用于传统霍普金森压杆技术的新型双剪切试样,可以在103~105s-1剪应变率范围实现对材料剪切性能的精确测量;同时,可以对材料的变形及失效过程进行直接观测.试样与压杆之间避免了复杂的界面或连接装置,通过转接头可以保证试样与压杆直接接触,提高测试精度,同时可以防止因试样的横向位移而导致的非均匀变形.获得了紫铜在1400~75000s-1应变率下的剪应力-剪应变曲线,并采用计算软件"ABAQUS/Explicit"对双剪切试样的动态加载过程进行了数值模拟和结果验证.分析表明,剪切区的主要区域内剪切成分占主导地位,其应力应变场沿厚度及宽度方向基本呈均匀分布.实验得到的剪应力-剪应变曲线与模拟结果吻合较好,说明所提出的基于分离式霍普金森压杆系统的双剪切试样可以为材料的高应变率力学性能测试提供一种方便有效的加载技术.   相似文献   

17.
Biological macromolecules have unique rheological properties that distinguish them from common synthetic polymers. Among these, fibrin has been studied extensively to understand the basic mechanisms of viscoelasticity as well as molecular mechanisms of coagulation disorders. One aspect of fibrin gel rheology that is not observed in most polymeric systems is strain hardening: an increase in shear modulus at strain amplitudes above 10%. Fibrin clots and plasma clots devoid of platelets exhibit shear moduli at strains of approximately 50% that are as much as 20 times the moduli at small strains. The strain hardening of fibrin gels was eliminated by the addition of platelets, which caused a large increase in shear storage modulus in the low strain linear viscoelastic limit. The reduction in strain hardening may result from fibrin strand retraction which occurs when platelets become activated. This interpretation is in agreement with recent theoretical treatments of semi-flexible polymer network viscoelasticity.Dedicated to Prof. John D. Ferry on the occasion of his 85th birthday.  相似文献   

18.
The Iosipescu shear test, utilizing a notched specimen in bending and a modification—the asymmetrical four-point bend (AFPB) test—were evaluated as shear tests for composites. This paper summarizes the results of an extensive numerical and experimental investigation of the Iosipescu and AFPB test methods. Finite-element analyses were conducted to assess the influence of notch parameters and load locations on the stress state in the specimen. The shear moduli and the shear strengths were experimentally measured for a quasiisotropic graphite/epoxy laminate using both the Iosipescu and the AFPB test methods. The tests were conducted for various combinations of notch parameters and load locations. The test results indicate that changes in the notch geometry and load locations aimed at improving the stress distribution in the test section resulted in unexpected changes in the failure mode. Paper was presented at the 1985 SEM Spring Conference on Experimental Mechanics held in Las Vegas, NV on June 9–14.  相似文献   

19.
The design and validation of a new fixture for the shear testing of cellular solids are presented. The fixture is an extended version of a picture-frame shear fixture (EPF) and is suited for comparatively thick rectangular block specimens. The stress state in the specimen is analyzed using a detailed finite element model. The finite element model is based on a 3D CAD model and incorporates friction in the revolute joints. Using specimens with low stiffness, a nearly pure and uniform shear stress state is induced in the specimen. A correction factor for the shear stress is derived which takes into account the friction in the joints and the nonuniformity of the shear stress distribution in the gauge section. The shear response of the polymer foam Rohacell® 200 WF is determined in order to demonstrate the capabilities of the EPF. The strain state is analyzed by means of digital image correlation and is detected to be very pure and uniform on the specimen’s surface, as predicted by the numerical analysis. The shear modulus obtained with the EPF is in good agreement with the calculated shear modulus derived from tensile tests on the same material. In addition, there is only little scatter of the strength values over the tested specimens which further confirms the accuracy of the new fixture.  相似文献   

20.
In this study, effects of typical texture components observed in rolled aluminum alloy sheets on shear band formation in plane strain tension/compression and bending are systematically studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain is characterized in terms of an elastic–viscoplastic continuum slip constitutive relation. First, a simple model analysis in which the shear band is assumed to occur in a weaker thin slice of material is performed. From this simple model analysis, two important quantities regarding shear band formation are obtained: i.e. the critical strain at the onset of shear banding and the corresponding orientation of shear band. Second, the shear band development in plane strain tension/compression is analyzed by the finite element method. Predictability of the finite element analysis is compared to that of the simple model analysis. Third, shear band developments in plane strain pure bending of a sheet specimen with the typical textures are studied. Regions near the surfaces in a bent sheet specimen are approximately subjected to plane strain tension or compression. From this viewpoint, the bendability of a sheet specimen may be evaluated, using the knowledge regarding shear band formation in plane strain tension/compression. To confirm this and to encompass overall deformation of a bent sheet specimen, including shear bands, finite element analyses of plane strain pure bending are carried out, and the predicted shear band formation in bent specimens is compared to that in the tension/compression problem. Finally, the present results are compared to previous related studies, and the efficiency of the present method for materials design in future is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号