首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Le Wang 《中国物理 B》2022,31(8):86201-086201
The antiferromagnetic (AFM) interlayer coupling effective field in a ferromagnetic/non-magnetic/ferromagnetic (FM/NM/FM) sandwich structure, as a driving force, can dramatically enhance the ferromagnetic resonance (FMR) frequency. Changing the non-magnetic spacer thickness is an effective way to control the interlayer coupling type and intensity, as well as the FMR frequency. In this study, FeCoB/Ru/FeCoB sandwich trilayers with Ru thickness ($t_{\rm Ru}$) ranging from 1 Å to 16 Å are prepared by a compositional gradient sputtering (CGS) method. It is revealed that a stress-induced anisotropy is present in the FeCoB films due to the B composition gradient in the samples. A $t_{\mathrm{Ru}}$-dependent oscillation of interlayer coupling from FM to AFM with two periods is observed. An AFM coupling occurs in a range of $2 {\rm Å} \le t_{\rm Ru} \le 8 {\rm Å}$ and over 16 $\mathrm{Å}$, while an FM coupling is present in a range of $t_{\rm Ru}< 2$ Å and $9 {\rm Å} \le t_{\rm Ru} \le 14.5 Å$. It is interesting that an ultrahigh optical mode (OM) FMR frequency in excess of 20 GHz is obtained in the sample with ${t}_{\mathrm{Ru}}= 2.5 \mathrm{Å}$ under an AFM coupling. The dynamic coupling mechanism in trilayers is simulated, and the corresponding coupling types at different values of $t_{\mathrm{Ru}}$ are verified by Layadi's rigid model. This study provides a controllable way to prepare and investigate the ultrahigh FMR films.  相似文献   

2.
The temperature dependences of interfacial exchange coupling in Co/semiconductor (SM)/Fe trilayers (SM≡Si or Ge) with different spacer thicknesses are investigated. Only one step is found in the third (not in the first) quadrant of the hysteresis loop of the trilayers with different SM thicknesses, which is ascribed to a larger interfacial coupling strength of Co/CoGe (or Co/CoSi) than of Fe/FeGe (or Fe/FeSi). Furthermore, in comparison with Co/Ge/Fe, a smaller exchange bias field HE and no clear step are observed in Co/Si/Fe, which may originate from the weaker interfacial coupling in this trilayer. The variation of coercivity HC with spacer thickness at low temperatures in Co/Ge/Fe is different from that in Co/Si/Fe, indicating again the important effect of the SM layer in the trilayers.  相似文献   

3.
The interaction of iron layers through a chromium spacer in Fe/Cr/Fe trilayers with different roughnesses of interfaces was studied by the Kerr magnetometry and Mandel’shtam-Brillouin light scattering techniques so as to trace the interlayer exchange coupling of the Fe layers depending on the Cr spacer thickness and the sample temperature. It is established that, in a broad range of these parameters, the interlayer exchange in Fe/Cr/Fe structures with sufficiently smooth interfaces is adequately described using the proximity magnetism and half-angle coupling models taking into account the antiferromagnetic properties of chromium. As the interface roughness increases, the well-known biquadratic exchange model becomes valid. This is evidence for the decisive role of the magnetic stiffness of a Cr spacer and the structure of interfaces on the noncollinear exchange coupling in Fe/Cr/Fe trilayers.  相似文献   

4.
The interplay between interfacial disorder and the antiferromagnetic order in Cr leads to complex behavior in Fe/Cr multilayers. Measurements of interlayer coupling are discussed for samples with different amounts of disorder ranging from optimally fabricated trilayers of Fe/Cr/Fe on Fe(0 0 1) whiskers, to trilayers with increasing degrees of interfacial roughness, and finally to superlattices of Fe/Cr. The coupling of ferromagnets through noble-metal spacer layers can be described by a model that consists of bilinear coupling averaged over thickness fluctuations and extrinsic biquadratic coupling induced by the thickness fluctuations. This, the conventional model, also describes much of the behavior observed for Fe/Cr multilayers. However, in this case, the antiferromagnetism in Cr leads to results not explained by the conventional model. For nearly ideal interfaces, the Fe–Cr coupling can induce order in Cr, modifying the temperature dependence of the interlayer coupling. In addition, interfacial disorder can frustrate the antiferromagnetic order in the Cr, leading to a variety of ordered states which have been observed by neutron scattering. Each of these ordered states, in turn modifies the interlayer coupling in unexpected ways. The different ways in which the systems minimize the frustration can explain the experimental results.  相似文献   

5.
The magnetic properties of Fe/Zn/Fe trilayers have been studied by ferromagnetic resonance and magnetization measurements. These measurements have been used to investigate the magnetic anisotropy of the iron layers and the magnetic coupling across the semiconductor spacer. The angular dependence of the resonance spectra has been measured in-plane and out-of-plane in order to deduce magnetic anisotropy constants of the samples. Experimental data were fitted by using an energy-density expression that includes bulk cubic anisotropy, growth-induced uniaxial in-plane anisotropy and perpendicular-surface anisotropy terms. A small ferromagnetic coupling is observed in the trilayers with spacer thickness up to .  相似文献   

6.
We study magnetoresistance (MR) and interlayer exchange coupling (IEC) in perovskite manganite junctions. We show that in La2/3Sr1/3MnO3/SrTiO3/La2/3Sr1/3MnO3 tunneling junctions, the MR ratio remains finite up to high temperatures near TC of bulk manganites. In the case of La2/3Ba1/3MnO3/LaNiO3/La2/3Ba1/3MnO3 metallic trilayers, we predict that the oscillation period of the IEC constant is dramatically changed by hole doping into the LaNiO3 spacer, while the MR ratio is relatively unaffected.  相似文献   

7.
Effect of interface roughness on antiferromagnetic coupling between Fe layers in a Fe/Cr/Fe trilayer, with Cr layer having a wedge form has been studied. All the samples have been deposited simultaneously on substrates having different roughness, thus it is being considered that there is no variation in the morphological features like grain size and grain texture of the films. Measurements have been done as a function of Cr spacer layer thickness and the peak value of antiferromagnetic coupling strength is compared among different trilayers, thus any influence of spacer layer thickness fluctuation from sample to sample has also been avoided. The samples are characterized by X-ray reflectivity (XRR) and magneto-optic Kerr effect (MOKE). XRR results show that the roughness of the substrate is not replicated at the successive interfaces. Antiferromagnetic coupling between Fe layers decreases with the increase of roughness of Fe/Cr/Fe interfaces.  相似文献   

8.
We study interlayer exchange coupling in epitaxial Fe/Fe(0.56)Si(0.44)/Fe trilayers. Iron-silicide spacers with high structural and compositional homogeneity for thicknesses up to 34 A are grown by coevaporation from two electron-beam sources. The coupling strength oscillates with spacer thickness for temperatures from 20 to 300 K with two antiferromagnetic maxima at 12 and 26 A, and it clearly increases with decreasing temperature down to 80 K. We conclude that the coupling across ordered Fe(1-x)Si(x) ( x approximately 0.5) is described by the conventional theory of interlayer coupling across metallic spacers.  相似文献   

9.
The structural, magnetic and transport properties of sputtered Fe/Si multilayers were studied. The analyses of the data of the X-ray diffraction, resistance and magnetic measurements show that heavy atomic interdiffusion between Fe and Si occurs, resulting in multilayers of different complicated structures according to different sublayer thicknesses. The nominal Fe layers in the multilayers generally consist of Fe layers doped with Si, ferromagnetic Fe-Si silicide layers and nonmagnetic Fe-Si silicide interface layers, while the nominal Si spacers turn out to be Fe-Si compound layers with additional amorphous Si sublayers only under the condition either for the series or for the series multilayers. A strong antiferromagnetic (AFM) coupling and negative magnetoresistance (MR) effect, about 1%, were observed only in multilayers with iron silicide spacers and disappeared when -Si layers appear in the spacers. The dependences of MR on and on bilayer numbers N resemble the dependence of AFM coupling. The increase of MR ratio with increasing N is mainly attributed to the improvement of AFM coupling for multilayers with N. The dependence of MR ratio is similar to that in metal/metal system with predominant bulk spin dependent scattering and is fitted by a phenomenological formula for GMR. At 77 K both the MR effect and saturation field increase. All these facts suggest that the mechanisms of the AFM coupling and MR effect in sputtered Fe/Si multilayers are similar to those in metal/metal system. Received: 11 February 1998 / Revised: 9 March 1998 / Accepted: 9 March 1998  相似文献   

10.
A model is proposed for magnetic ordering in Fe/Cr-type multilayers substantially above the Néel temperature of bulk chromium. Redistribution of the charge (and, hence, spin) density near the Fe/Cr interfaces gives rise to the formation of an essentially inhomogeneous spin-density-wave (SDW) state in the chromium spacer. The spatial structure of the antiferromagnetic order parameter in thick spacers is described. The SDW contribution to the effective exchange coupling between the moments in adjacent iron layers is calculated. The data obtained are used in the interpretation of experimental data on the tunneling spectroscopy of trilayers and neutron diffraction from Fe/Cr superlattices.  相似文献   

11.
刘伟  刘雄华  崔伟斌  龚文杰  张志东 《中国物理 B》2013,22(2):27104-027104
Recent advances in the study of exchange couplings in magnetic films are introduced.To provide a comprehensive understanding of exchange coupling,we have designed different bilayers,trilayers and multilayers,such as anisotropic hard/soft-magnetic multilayer films,ferromagnetic/antiferromagnetic/ferromagnetic trilayers,[Pt/Co]/NiFe/NiO heterostructures,Co/NiO and Co/NiO/Fe trilayers on an anodic aluminum oxide(AAO) template.The exchange-coupling interaction between soft-and hard-magnetic phases,interlayer and interfacial exchange couplings and magnetic and magnetotransport properties in these magnetic films have been investigated in detail by adjusting the magnetic anisotropy of ferromagnetic layers and by changing the thickness of the spacer layer,ferromagnetic layer,and antiferromagnetic layer.Some particular physical phenomena have been observed and explained.  相似文献   

12.
For epitaxial trilayers of the magnetic rare-earth metals Gd and Tb, exchange coupled through a nonmagnetic Y spacer layer, element-specific hysteresis loops were recorded by the x-ray magneto-optical Kerr effect at the rare-earth M5 thresholds. This allowed us to quantitatively determine the strength of interlayer exchange coupling (IEC). In addition to the expected oscillatory behavior as a function of spacer-layer thickness dY, a temperature-induced sign reversal of IEC was observed for constant dY, arising from magnetization-dependent electron reflectivities at the magnetic interfaces.  相似文献   

13.
Fe/TaO x /Co trilayers were grown on Si(100)/SiO2 substrates and on tantalum buffer layers by a high vacuum magnetron sputtering system. The effects of both Ta buffer layer and tantalum-oxide barrier layer thickness on the structural and magnetic properties and the coupling of the ferromagnetic layers have been studied. It was observed that Ta improves the structural properties of the Fe layer resulting in an increased coercive field. For a barrier thickness of 4 nm a weak decoupling starts to appear between the ferromagnetic layers and a clear step formation is observed with increasing thickness. The minor hysteresis loops predict an interlayer coupling for thin barriers. The annealing of trilayers up to 250°C shows an increased coercivity for only the Fe layer. Annealing further at 400°C has the opposite effect of decreasing the coercivity, indicating intermixing at the interfaces of the Fe. The refractive index of the insulator barrier shows that the barrier layer is not totally in the form of tantalum-pentoxide.  相似文献   

14.
We report a perpendicular magnetic tunnel junction(p MTJ) cell with a tunnel magnetoresistance(TMR) ratio of nearly 200% at room temperature based on Co Fe B/Ta/Co Fe B as the free layer(FL) and a synthetic antiferromagnetic(SAF) multilayer [Pt/Co]/Ru/[Pt/Co]/Ta/Co Fe B as the reference layer(RL). The field-driven magnetization switching measurements show that the p MTJs exhibit an anomalous TMR hysteresis loop. The spin-polarized layer Co Fe B of SAF-RL has a lower critical switching field than that of FL. The reason is related to the interlayer exchange coupling(IEC) through a moderately thick Ta spacer layer among SAF-RLs, which generates a moderate and negative bias magnetic field on Co Fe B of RL. However, the IEC among RLs has a negligible influence on the current-driven magnetization switching of FL and its magnetization dynamics.  相似文献   

15.
In this paper, we present a study of the magnetic coupling and magnetoresistance (MR) properties in Fe/Si1-xAgx multilayers with a granular Si1-xAgx spacer layer. We have found that, with increasing silver content (x) in a silicon matrix, the magnetic state of multilayers changes from a nonmagnetic coupling state to weak antiferromagnetic around the percolation point of the ~2.4 nm thick spacer Si1-xAgx. The MR measurements also reveal an abrupt increase of MR near the same percolation point. These changes are ascribed to the formation of the percolation path in the granular spacer.  相似文献   

16.
Giant magnetoresistance of the epitaxial Co/Cu/Co trilayers grown on vicinal Si(111) was determined as a function of Cu spacer coverage in the range from 0 to 7 ML. The first maximum of giant magnetoresistance and antiferromagnetic coupling was detected at 3.0 ML coverage of the Cu spacer. The portion of antiferromagnetic coupling in the first antiferromagnetic maximum was estimated as 17%. 3D growth mode of the Cu spacer leads to the simultaneous occurrence of the ferromagnetically and antiferromagnetically coupled areas between the Co layers.  相似文献   

17.
Positive exchange bias field (He) is observed in Tb/Cr (tCr)/FeCo trilayers at 5 K without cooling field, and negative He for Tb/FeCo bilayer. The negative He of Tb/FeCo implies the FM coupling at the interface due to Co and Fe dominate in the magnetization of the ferrimagnetic interlayer alloy of FeCo and Tb. With the inserting of Cr layer, this situation is broken, and the positive He implies the antiferromagnetic interlayer coupling. A peak of He = 6.0 mT for trilayers with tCr = 1.5 nm is corresponding to the minimum value of coercivity as a function of tCr at 5 K, which is used to study the effect of the cooling field (Hfc) on He as a function of temperature. It is found that Hfc of 100 mT triggers He from positive to negative at T ≤ 15 K. The magnetoresistance results also confirm the coexistence of multiple MR mechanisms in these trilayers.  相似文献   

18.
Using a semi-classical approach, Hood, Falicov and Penn have studied the effects of interfacial roughness on the magnetoresistance (MR) of iron based trilayers (Fe/Cr/Fe and Fe/Cu/Fe). We extend their theory to magnetic metallic multilayers composed of N bilayers ferromagnetic-normal metal. The in plane MR of Co/Cu multilayers is calculated for correlated quasiperiodic interfaces. The averaged effects due to impurities, interdiffusion, band structure, etc. are included in a simple way using two phenomenological parameters S and S for two directions of spin. MR variation with S, S and relaxation time is reported. We analyse also recent experimental data giving the influence of number of bilayers on the MR of Co/Cu multilayers for different temperatures.  相似文献   

19.
Ultrathin epitaxial Fe films on Cu(1 0 0) with perpendicular magnetization have been used as templates for the preparation of FCC Fe/Cu/Fe trilayers. The magnetic anisotropy and the coupling of these films have been studied by in-situ magneto optical Kerr effect measurements and Kerr microscopy. The magnetic coupling of both Fe layers is found to be dominated by magnetostatic interaction. Adsorbate-induced spin reorientation in the top layer also causes spin reorientation in the bottom layer. The governing role of the Fe-vacuum interface for the magnetism of the whole trilayer is demonstrated.  相似文献   

20.
Using a method of free energy minimization, this paper investigates the magnetization properties of a ferromagnetic (FM) monolayer and an FM/antiferromagnetic (AFM) bilayer under a stress field, respectively. It then investigates the magnetoresistance (MR) of the spin-valve structure, which is built by an FM monolayer and an FM/AFM bilayer, and its dependence upon the applied stress field. The results show that under the stress field, the magnetization properties of the FM monolayer is obviously different from that of the FM/AFM bilayer, since the coupled AFM layer can obviously block the magnetization of the FM layer. This phenomenon makes the MR of the spin-valve structure become obvious. In detail, there are two behaviors for the MR of the spin-valve structure dependence upon the stress field distinguished by the coupling (FM coupling or AFM coupling) between the FM layer and the FM/AFM bilayer. Either behavior of the MR of the spin-valve structure depends on the stress field including its value and orientation. Based on these investigations, a perfect mechanical sensor at the nano-scale is suggested to be devised experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号