首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the structural phase transitions and electronic properties of GaAs nanowires under high pressure by using synchrotron x-ray diffraction and infrared reflectance spectroscopy methods up to 26.2 GPa at room temperature.The zinc-blende to orthorhombic phase transition was observed at around 20.0 GPa.In the same pressure range, pressureinduced metallization of GaAs nanowires was confirmed by infrared reflectance spectra.The metallization originates from the zinc-blende to orthorhombic phase transition.Decompression results demonstrated that the phase transition from zincblende to orthorhombic and the pressure-induced metallization are reversible.Compared to bulk materials, GaAs nanowires show larger bulk modulus and enhanced transition pressure due to the size effects and high surface energy.  相似文献   

2.
The bonding features and electronic structures of a series of transition metal carbon dioxide complexes have been studied by density functional theory (DFT) calculations combined with natural bond orbital (NBO) analysis and energy-decomposition analysis (EDA). NBO analysis shows that the interaction between the metal center and the carbon atom of the carbon dioxide ligand (M–C) is stronger than the other interaction between the metal center and the carbon dioxide ligand. Natural hybrid orbital (NHO) analysis gives the detailed bonding features of the M–C bond for each complex. The NBO charge distribution on the carbon dioxide unit in all studied complexes is negative, which indicates charge transfer from the metal center to the carbon dioxide ligand for all studied complexes. The hyperconjugation effect of the metal center and the two C–O bonds of the carbon dioxide ligand has been estimated using the NBO second-order perturbation stabilization energy. It was found that the NBO second-order stabilization energy of C–O?→?nM* is sensitive to the coordinated sphere and the metal center. Frontier molecular orbital (FMO) analysis shows that complexes 1 and 4 may be good nucleophilic reagents for activation of the carbon dioxide molecule. However, the EDAs show that the M–CO2 bond interaction energy of complex 4 is about two times as large as that of complex 1. The high M–CO2 bond interaction energy of complex 4 may limit its practical application.  相似文献   

3.
4.
5.
For the first time, the electron–electron interaction energy relative to the coupling of a single-walled carbon nanotube to the involved leads is estimated analytically by considering a quantum box transversal to the longitudinal axis of the tube. In addition, the relation of our calculation to creation and annihilation operators associated with the above coupling is discussed.  相似文献   

6.
The discharge capacity of zinc–carbon cells (Leclanche cell) is limited by the performance of the cathode material (MnO2) and physical properties of carbon powder added to MnO2. Acetylene black, Vulcan XC 72, Black Pearls 2000, and a carbon composite (consisting of 50% acetylene black and 50% Black Pearls 2000®) were evaluated as cathode additives in test cells and were compared. The study indicated that cathode mixture with Black Pearls 2000®showed improvement in performance than acetylene black, the most commonly used carbon in commercial zinc–carbon cells. The performance of the test cells was found to have a correlation with the physical properties of the carbons used.  相似文献   

7.
We demonstrate laser induced semiconductor–metal transition through an abrupt change in diamagnetic susceptibility of a donor at critical concentration in a GaAs/AlxGa1−xAs Quantum Well for finite barrier model in the effective mass approximation using variational principle. We have considered Anderson‘s localization due to the random distribution of impurities in our calculation. The nonparabolicity of the conduction band is also considered. Our results without laser field agree with the earlier theoretical results and also with the recent experimental results.  相似文献   

8.
We investigate the effects of spin–orbit interaction (SOI) and valley mixing on the transport and dynamical properties of a carbon nanotube (CNT) quantum dot in the Kondo regime. As these perturbations break the pseudo-spin symmetry in the CNT spectrum but preserve time-reversal symmetry, they induce a finite splitting Δ between formerly degenerate Kramers pairs. Correspondingly, a crossover from the SU(4) to the SU(2)-Kondo effect occurs as the strength of these symmetry breaking parameters is varied. Clear signatures of the crossover are discussed both at the level of the spectral function as well as of the conductance. In particular, we demonstrate numerically and support with scaling arguments that the Kondo temperature scales inversely with the splitting Δ in the crossover regime. In presence of a finite magnetic field, time reversal symmetry is also broken. We investigate the effects of both parallel and perpendicular fields (with respect to the tube's axis) and discuss the conditions under which Kondo revivals may be achieved.  相似文献   

9.
DFT (B3PW91) and CASSCF calculations have been carried out to study the relative α migratory abilities of H and F in alkyl transition metal complexes. It is shown that the activation energy is considerably lower to migrate H than F, whereas the energies of reaction are similar for the two reactions. A study of the electron configurations and the orbitals describing these configurations shows that the high activation energy for F is due to a 4-electron repulsion between an F lone pair and the occupied Ru=C π orbital.  相似文献   

10.
Liquid Lennard-Jones clusters with magic number of atoms N = 55, 147, 309, 561 and 923 were cooled down in Monte Carlo simulations until freezing. Structural properties of the clusters, including the radial dependence of atomic concentration/density and the local regular structure in arrangement of atoms, just before freezing were analysed. Existence of spherical layers in atomic density around the centre of mass of liquid LJ clusters was confirmed. Formation of layers is explained by central net forces acting on every cluster atom and leading to positioning an atom close to the cluster centre of mass. The strong layering in small clusters of N = 55 and 147 affects atomic diffusion in radial and tangential directions inside the cluster, leading to easier movement of atoms on the layer surface. Analysis of radial profiles of four types of structural units detected in liquid clusters reveals that icosahedral units are the most numerous and are located mainly near cluster surface of all clusters and also in the centre of small clusters.  相似文献   

11.
The results of calculating the electronic structure of semiconductor compounds AIIBVI: 3d(A = Zn; B = S, Se, Te; 3d = Sc-Cu) at a low content of 3d impurities are discussed. The excess charge of an impurity ion with respect to the charge of the zinc ion is determined for the whole series of 3d impurities. It is found that the excess charge gradually varies from +0.6|e| for the scandium impurity to ?0.2|e| for the copper impurity. Photoionization of an impurity ion is simulated by adding a hole or an electron to the impurity center. The added charge is redistributed between the impurity ion and its nearest neighbors, thus decreasing or increasing the total excess charge of the impurity center by a magnitude of ~ 0.2|e|.  相似文献   

12.
We have optically probed the Semiconductor to Metal transition (SC-MT) in Sm1−xLnxS and SmS1−xAsx films. For Ln = Yb, Sm2+4f6→4f55d transitions (E1, E2) are well preserved for 0 ⩽ x ⩽ 1 showing the stability of Sm2+ and the absence of a SC-MT. For Ln = Tm, the definition of E1 and E2 disappears as x increases from 0 to 0.3, the 4f levels of Sm2+ seem to broaden or 5d band gets filled up leading to a SC-MT. For As substitution, SC-MT occurs for x ⩽ 0.10.  相似文献   

13.
An analytically nonlocal Euler–Bernoulli beam model for the wave propagation in fluid-filled single-walled carbon nanotube (SWCNT) is established. The governing equations with the nonlocal effects are derived on the variational principle, and used in the wave propagation analysis of the SWCNT beam. Compared with the partially nonlocal Euler–Bernoulli beam models used previously, the analytically nonlocal model presented in the present study predicts well the effects of the stiffness enhancement and the wave damping at the high wavenumber or the strong nonlocal effects area for the fluid-filled SWCNT beam. Though the analytical model is less sensitive than the partially nonlocal model when the moving velocity of the internal fluid is high enough, it simulates more of the high-order nonlocal effecting information than the partially nonlocal model does in many cases.  相似文献   

14.
15.
In this study, we investigate Li adsorption mechanisms on the C60-SWCNT hybrid system using density functional theory. It is found that the Li adsorption energy of the C60-SWCNT hybrid system is increased in comparison to that of the pure SWCNT. The Li adsorption energy ranges from −1.917 eV to −2.642 eV for the single-Li adsorbed system and from −2.351 eV to −2.636 eV for the double-Li adsorbed system. It is also found that the adsorption energy becomes similar at most positions throughout the structure. In addition, the Li adsorption energy of 31-Li system is calculated to be −1.863 eV, which is significantly lower than the Li–Li binding energy (−1.030 eV). These results infer that Li atoms will be adsorbed on the space 1) between C60 and C60; 2) between SWCNT and C60; 3) the rest of the space (e.g. between SWCNTs), rather than form Li clusters. As more Li atoms are adsorbed onto the C60-SWCNT hybrid system due to such improved Li adsorption capability, the metallic character of the system is enhanced, which is confirmed via the band structure and electronic density of states.  相似文献   

16.
The electronic properties of TiO_2-terminated BaTiO_3(001) surface subjected to biaxial strain have been studied using first-principles calculations based on density functional theory. The Ti ions are always inward shifted either at compressive or tension strains, while the inward shift of the Ba ions occurs only for high compressive strain, implying an enhanced electric dipole moment in the case of high compressive strain. In particular, an insulator–metal transition is predicted at a compressive biaxial strain of 0.0475. These changes present a very interesting possibility for engineering the electronic properties of ferroelectric BaTiO_3(001) surface.  相似文献   

17.
The transition between insulator and metal conductor states, induced by oxygen non-stoichiometry, was studied for NaNbO3 : Mn crystals. Conditions for an optimal reduction were determined on the basis of TGA tests. The temperature dependencies of the resistance measured on the macroscale showed that the transition from thermally activated to metallic features depends on the level of oxygen deficiency. The LC-AFM measurement exhibited non-homogeneous electric resistance on the nanoscale. We ascribed the local insulator–metal transition to changeover in the electronic state of the Nb ions occurring in filaments. The Mn dopant stabilised the induced oxygen non-stoichiometry and the metallic conduction down to room temperature.  相似文献   

18.
Due to the topology, insulators become non-trivial, particularly those with large Chern numbers which support multiple edge channels, catching our attention. In the framework of the tight binding approximation, we study a non-interacting Chern insulator model on the three-component dice lattice with real nearest-neighbor and complex next-nearest-neighbor hopping subjected to Λ-or V-type sublattice potentials. By analyzing the dispersions of corresponding energy bands, we find that the system undergoes a metal–insulator transition which can be modulated not only by the Fermi energy but also the tunable extra parameters. Furthermore, rich topological phases, including the ones with high Hall plateau, are uncovered by calculating the associated band’s Chern number. Besides, we also analyze the edge-state spectra and discuss the correspondence between Chern numbers and the edge states by the principle of bulk-edge correspondence. In general, our results suggest that there are large Chern number phases with C = ±3 and the work enriches the research about large Chern numbers in multiband systems.  相似文献   

19.
We demonstrate the spin interactions between dispersedly trapped electrons and holes in a semiconductor using the double electron–electron resonance (DEER) method of the pulsed electron paramagnetic resonance (EPR) techniques. An aluminum-doped titanium dioxide crystal is adopted as a spin system, in which optically generated electrons and holes are trapped, to reveal EPR signals that appear close to each other at a selected crystal orientation under an external magnetic field. We used the four-pulse DEER method by applying two microwave frequencies to a microwave cavity for pumping electrons and probing holes at the optimum temperature of 32 K. The dipolar modulation in the probed signal by pumping interacting spins was successfully detected. The observed non-oscillating decay shape indicates that the detected interaction is caused by widely distributed trapped electron and hole spins over long distances. We were able to extract a spin-pair distribution function by the first derivative of a background-corrected curve, referring to a previously reported method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号