首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Optical birefringence, calorimetric, thermal expansion, powder and single crystal X-ray diffraction investigations of mixed proton conductors [Rb1-x(NH4)x]3H(SeO4)2 were performed with the aim of studying the influence of partial substitution of cations on the superprotonic phase transition, on the atomic structure and on other characteristic features of this type of crystals.  相似文献   

2.
Abstract

In this paper the results of birefringence studies and of optical observations in polarized light in a wide temperature region are presented for crystals Cs2CdI4 and Cs2ZnI4. There is the following sequence of phases: commensurate orthorhombic Pnma ? incommensurate ? monoclinic ferroelastic P21/n ? triclinic ferroelastic PT. A correlation was observed between the peculiarities of birefringence and NQR spectra temperature dependence. An assumption is made, that in Cs2ZnI4 crystal in a broad pre-transition region (T - T i = 100 K) precursor clusters exist, which manifest themselves as coexistence of NQR spectra of two phases and as deviation of birefringence from the linear temperature dependence (“tail”).  相似文献   

3.
The commensurate and incommensurate structures of Rb2ZnCl4 have been refined using the four-dimensional formalism for modulated structures. They are characterized by a rigid body modulated rotation of the ZnCl4 tetrahedra and by a translation motion of the Rb atoms.  相似文献   

4.
DSC and complex impedance studies of the protonic conductor (NH4)4H2(SeO4)3, which undergoes a superionic phase transition of first order at Ts = 378 K show that the activation energy of ionic conductivity d(lg σ)/dt and the ordering enthalpy ΔCp of the crystal are proportional: d(lg σ)/dT = XΔCp/RTs + const, as found for MAg4I5 crystals undergoing a second-order superionic phase transition. Thus the short-range order environment of the species involved in fast-ion transport plays the main role in the superionic phase transition. This is also supported by the value of the entropy change at Ts, ΔS = 43 J/mole·K. A new metastable phase was found to be induced on heating the (NH4)4H2(SeO4)3 crystal above Ts.  相似文献   

5.
Abstract

In the series of incommensurate A2BX4 halides with the β-K2SO4 type structure, Cs2CdBr4 exhibits an unusual behaviour since the “lock-in” phase transition occurs at the centre of the Brillouin zone. The observed phase sequence is the following: Pnma (Z = 4)?INC(k0 ≈ 1/6a*)?P21/n(Z = 4)?P1 (Z = 4). These phase transitions have been studied by means of Raman scattering and ultrasonic measurements. It is shown that the Pnma?INC?P21/n sequence is governed by order-disorder processes due to CdB2-4 tetrahedra reorientations coupled with translations of the Cs+ cations, and that the low-temperature P21/n?P1 transition is of a displacive nature, governed by a soft optical mode. The “pseudo-proper” ferroelastic character of these transformations is clearly established. A model potential developed in the framework of Landau theory is proposed; this model is able to reproduce the general trends observed in the temperature dependence of the soft-modes and of the elastic constants in the different phases.  相似文献   

6.
T. Fukami  S. Jin  R. H. Chen 《Ionics》2006,12(4-5):257-262
Electrical conductivity, differential scanning calorimetry, and X-ray diffraction measurements were performed on a pentacesium trihydrogen tetrasulfate, Cs5H3(SO4)4, crystal. The transition entropy at a superionic phase transition and the activation energy of proton migrations in the superionic phase were determined to be 58.2 J K−1 mol−1 and 0.48 eV, respectively. The crystal structure of Cs5H3(SO4)4 at room temperature was refined. The electrical conduction in Cs5H3(SO4)4 was discussed with the refined structure.  相似文献   

7.
A comparative study of several crystals of Rb2ZnCl4, obtained by different crystal growing methods, has allowed us to determine the influence of growth defects on the incommensurate phase and on the lock-in transition of these samples. X-ray diffraction has allowed us to complete previous dielectric measurements realized on the same samples and to relate the crystalline quality to the evolution of the modulation as a function of the temperature. The principal influence of an increasing defect density seems to be a stronger pinning of the modulated phase and this induces a lower lock-in temperature and a wider hysteresis.  相似文献   

8.
The birefringence of LiKSO4 has been measured over the range 27–700°C. The change in birefringence with heating and cooling is seen to be very different. Observations have been made on domains in (001) and (100) plates near the phase transitions.  相似文献   

9.
A device for simultaneous measurement of thermal properties (specific heat, latent heat and related properties) and electric properties (such as permittivity, dielectric spectroscopy) based on conduction calorimetry is explained. The device is used to study the commensurate-incommensurate (lock-in) phase transition in Rb2ZnCl4 single crystal. This transition is found to be first-order. Thermal and dielectric anomalies are discussed.  相似文献   

10.
Abstract

Several Tl0 (6s26p 1)-type paramagnetic centers, produced by low temperature X-ray irradiation, were observed and studied by electron spin resonance (ESR) in the orthorhombic ferroelectric phase of thallium doped Rb2ZnCl4 crystals. The centers were formed by electron trapping at Tl+ ions localized substitutionally at Rb+ sites. The number and properties of the observed centers account for the tripling of the unit cell in the ferroelectric phase.  相似文献   

11.
Abstract

The domain structures of the β-K2SO4 crystal were analyzed by group theory. We obtained the permissible kinds of domain association and domain walls from the results of the group theory. It is suggested from the analysis that the (110) and (130) planes are Wmb walls. The value of the spontaneous strain of K2SO4 wast = 6.32 × 10?3 at room temperature and also its temperature dependence was observed.  相似文献   

12.
The ferrodistortive phase transition in the bis-tetramethylammonium tetrabromide crystals below room temperature is studied within the framework of the Landau theory. The specific heats of [N(CH3)4]2MnBr4 and [N(CH3)4]2ZnBr4 are correctly described down to 40°C below the transition temperature. The phenomenological parameters are determined from calorimetric results, elastic constants and thermal expansion data. Using these coefficients, the monoclinic angle in the ferrodistortive phases is obtained. The anharmonic quantities, such as the isothermal compressibility, calculated from the specific heat data, are in good agreement with the values derived from the elastic measurements.  相似文献   

13.
A rich sequence of structural modulations in Cs2HgCl4 as a function of temperature was studied by means of X-ray diffraction. Accurate satellite-position measurements on the cooling and heating paths of the crystal revealed abnormal thermal hystereses for incommensurate phases and coexistences of neighboring commensurate phases. A well-defined X-ray picture of the a-axis modulated phases in the range of 221–184 K were observed on the heating path, while the c-axis modulated phases existing below 184 K were definitely detected on the cooling path. The proper conditions for a precise phase diagram of Cs2HgCl4 can be correlated with relatively defect-free transformations of a-axis modulations at heating and of c-axis modulations at cooling. The peculiarity of Cs2HgCl4 to switch modulation direction among the a- and c-axes at 184 K allows us deliberately accumulate and thus control a majority of mobile defects on the mutually perpendicular (100) or (001) planes by possessing crystal within temperature domain of a- or c-axes modulations, respectively.  相似文献   

14.
H. Manaka  M. Nishi  I. Yamada 《高压研究》2013,33(3-6):171-177
Abstract

Neutron scattering experiments on the two-dimensional Heisenberg ferromagnets Cs2 CuF4 and K2CuF4 have been performed around 2 ~ 3 GPa over 1·4–15 K. At ambient pressure both the intralayer and the interlayer exchange interactions in these two compounds are ferromagnetic. At about 2 GPa, the interlayer exchange coupling in Cs2 CuF4 is found to change from ferromagnetic to antiferromagnetic, while the ferromagnetic intralayer exchange interaction is maintained. Contrary to Cs2CuF4, the ferromagnetism in K2Cuf4 is not destroyed by pressure up to 9 GPa, that was confirmed in the early study of the magnetic susceptibility measurements.  相似文献   

15.
Abstract

The paper reviews the results of experimental and theoretical studies of ferroic phase transitions in β-LiNH4SO4 and its deuterated analogue. β-LiNH4SO4 undergoes succesive phase transitions: a paraelectric - ferroelectric phase transition at T1 ? 462 K, a ferroelectric - ferroelastic phase transition at T2 ? 283 K and a transition from one ferroelastic phase to the other at T3 ? 28 K. Attention is focused on the influence of the order of phase transitions on the pattern of ferroelectric and ferroelastic domain structure, and also on the role played by the dynamics of molecular groups in the mechanism of transitions. The pre-transition effect connected with the ferroelectric-paraelectric transition: heterophase, capable of accounting for anomalies in different physical properties present 1-3 K below T1 is shown. The anomalous temperature variation of spontaneous polarisation of the crystal is discussed within the framework of the phenomenological model of weak ferroelectrics.  相似文献   

16.
Wide-line proton NMR studies on polycrystalline tetramethylammonium tetrachlorozincate have been carried out at high hydrostatic pressures up to 15 kbar in the temperature range 77-300 K and at ambient pressure down to 4.2 K. A second-moment transition is observed to occur starting around 161 K, the temperature for the V-VI phase transition. This transition temperature is seen to have a negative pressure coefficient up to 2 kbar, beyond which it changes sign. At 77 K the second moment decreases to 4 kbar and then increases again as a function of pressure. The results are explained in terms of the dynamics of the N(CH3)4 groups.  相似文献   

17.
The electrical conductivity of ZrO2 doped with Co3O4 has been measured at various temperatures for different molar ratios. The conductivity increases due to the migration of vacancies created by doping. The conductivity is also found to increase with rise in temperature up to 120°C, and after attaining a maximum the conductivity decreases due to a collapse of the lattice framework. A second rise in conductivity around 460°C in all the compositions confirms the phase transition in ZrO2 from monoclinic to tetragonal symmetry. X-ray powder diffraction and DTA studies were carried out for confirming the doping effects and the transition in ZrO2.  相似文献   

18.
The structural data on the orthorhombic phase of K2Cd2(SO4)3 at four different temperatures of Abraham et al. (1978) [J. Chem. Phys., 68, 1926] is reanalyzed in terms of frozen symmetry modes. The eigenvector of the primary distortion present in the orthorhombic phase is derived. The temperature variation of the amplitude of the order parameter is determined and compared with those of the amplitude of the frozen secondary distortion and the amplitude of the orthorhombic strain. In contrast with some previous literature, it is shown that, within experimental accuracy, all these magnitudes exhibit the correlation expected from a conventional Landau model.  相似文献   

19.
In A2BX4 structures which are isostructural to β-K2SO4 (with A being a monoatomic cation) there are two crystallographically independent cations surrounded by 11 and 9 X-atoms. The 11-coordinated cation is less firmly bound and the arrangement of its five closest neighbours is irregular. One of these contacts is approximately parallel to the pseudohexagonal axis of the structure and is often shorter than the sum of the corresponding ionic radii. A survey of available structural data indicates that the low-temperature structural instability of a good number of these compounds is related to the coordination of this 11-coordinated cation and especially to the bonding strength of this short bond, which is often the shortest cation-anion contact in the structure. Typically, the relative contribution of this contact to the bond-valence sum of the 11-coordinated cation is larger in the compounds which undergo phase transitions at lower temperatures. The presence of this short contact is correlated with the ratio of the lattice parameters a/b (Pnma-setting). In general, the Pnma phase is unstable at low temperatures in those compounds where this ratio is smaller. On the other hand, the value of a/b can be related to the ratio of the effective sizes of cations and BX4 tetrahedra, so that typical low-temperature instabilities of the β-K2SO4 structure occur for smaller values of the ratio between cation radius and the sum of the ionic radii of atoms A and X. In most cases, the resulting phase transitions stabilize modulated structures (frequently incommensurate), with slight distortions with respect to the β-K2SO4 structure. However, when the bond valence sum of the eleven-coordinated cation is extremely low, more drastic (first-order) structural changes are observed (e.g. phase transitions into the Sr2GeS4 structure type). In addition, the survey indicates, especially in complex oxides, that low-temperature phase transitions are more probable in those structures with looser packing. Considering the criteria proposed, a set of compounds is indicated where low-temperature phase transitions are plausible.  相似文献   

20.
The structural properties and relaxation mechanisms of Li2KH(SO4)2 crystals were determined using the temperature dependences of NMR spectra and the spin-lattice relaxation times (T1) of their 1H, 7Li, and 39K nuclei. The results obtained were compared with the previously reported physical properties of LiKSO4 crystals. The substitution of the potassium ions with protons in the LiKSO4 crystals were variations in the phase transition temperatures, and the non-appearance of ferroelastic properties. The 7Li T1 for the Li2KH(SO4)2 crystals was much shorter than the 7Li T1 for the LiKSO4 crystals, and these findings indicate that the presence of the protons in Li2KH(SO4)2 causes the Li ions to move with greater freedom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号