首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magnetic and crystallographic properties have been studied by neutron powder diffraction and measurements of magnetization and magnetization hysteresis-loops for substituted spinels of Zn1?xCuxCr2Se4 with 0.0≤x≤0.3. It is found that the Zn0.85Cu0.15Cr2Se4 spinel has two magnetic phase transitions at 23.0 K (Néel temperature; T N) and 410 K (Curie temperature; T C) and that the Zn0.70Cu0.30Cr2Se4 spinel has magnetic transitions at 24.5 K (T N) and 415 K (T C) on heating. The low-temperature magnetic phase transition is from a spiral antiferromagnet to a ferromagnet, and the high-temperature magnetic phase transition is from a ferromagnet to a paramagnet, while ZnCr2Se4 shows a magnetic phase transition only from a spiral antiferromagnet to a paramagnet at about 21.0 K. From neutron powder diffraction, it is also found that the spinels of Zn1?x Cu x Cr2Se4; 0.0 ≤ x ≤ 0.3. show satellite-like magnetic reflection having indexes (h ± Q, k, l) with Q = 0.470 below T N and short-range order of spins (spin glass-like) above T N. The incommensurate antiferromagnetic phase below T N results from a spiral long-range order of the spins of Cr3+. The intermediate ferromagnetic phase between T N and T C is related not to the spiral spin order but to double-exchange magnetic interaction among Cr3+ and Cr4+ mediated by current carriers, positive holes, which is made by the substitution of Zn2+ ions with Cu1+ ions in Zn1?x Cu x Cr2Se4.  相似文献   

2.
Spin glass (SG) is observed in semiconducting solid solutions xCuCr2Se4-(1?x)Cu0.5Me0.5Cr2Se4 (Me = In, Ga) for 0?x?0.1. For x0.1 the material exhibits p-type metal conductivity. For x?0.6 the magnetic properties are purely ferromagnetic (FM), while for 0.1 <x?0.2 an unusual mixed two-phase SG+FM state is found. Indirect exchange via charge carriers is assumed to be responsible for SG suppression.  相似文献   

3.
The low-energy magnetic excitations (?ω ≤ 2 meV) of polycrystalline samples of Nd2-xCexCuO4 with x = 0, 0.1 and 0.15 have been measured with high resolution inelastic neutron scattering using time-of-flight technique at temperatures below 0.3 K. All observed scattering originates from transitions within the ground state doublet of Nd3+. For Nd2CuO4 the response is inelastic, and shows at least three different modes, of which one is almost dispersionless. For x = 0.1 the excitation spectrum shifts towards lower energies, but the main features of the undoped compound are still visible, whereas for x = 0.15 the response is mainly quasi-elastic but remains localised in Q-space around the first magnetic Bragg point (0.5 0.5 1). A comparison with data obtained on a triple-axis-spectrometer on single crystals with x = 0.0 and x = 0.15 reveals that the response of the doped sample in the [0 0 1] direction is still inelastic.  相似文献   

4.
Abstract

The magnetization, the susceptibility and the magnetic anisotropy field of Cu x Zn1?xCr2Se4 compounds have been studied at low temperatures (down to 2.9 K) in: high magnetic stationary fields (up to 14 T), high pulsed magnetic fields (up to 25 T), medium magnetic stationary fields (up to 0.6 T). The magnetic structure of these spinels was studied by neutron powder diffraction.

The magnetic properties of CuxZn1?xCr2Se4 are explained in terms of the molecular field approximation assuming the existence of 90° exchange interactions, ferromagnetic for Cr-Se-Cr between the nearest Cr ions and antiferromagnetic for Cr-Se-Se-Cr between the second-nearest Cr ions. The exchange parameters and integrals for the whole series under consideration are calculated. Taking into account the three magnetic phase transitions observed in these spinels (Juszczyk, Krok, Okońska-Koz?owska, Broda, Warczewski, Byszewski, 1981) and the neutron diffraction studies a modification of the simple spin spiral forced by a strong magnetic field is described.  相似文献   

5.
The chemical composition of Cu y Cr2Se4?z Br x spinels depends strongly on the preparation parameters. Spinels with 0.8?y?1.2, 0.5?x?2, and 0?z?x?0.2 have been prepared. Whereas the lattice constanta o of these spinels differs only by less than approximately 0.6%, their Curie temperatureT c depends sensitively on the spinel composition. For Cu1.1Cr2Se3.4Bro.46,a o=1.0410 nm andT c=310 K were found to compared witha 0=1.0447 nm andT c=84 K of CuCr2Se2Br2.  相似文献   

6.
X-ray structural, X-ray phase, and dilatometric analyses were used to explore specific features of the formation of solid solutions in the (1 − x)SrTiO3xBiScO3 system with x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5. It was found that the synthesis of solid solutions from the initial Bi2O3, Sc2O3, TiO2, and SrCO3 components is accompanied by a considerable increase in the linear dimensions of the samples, depending on their composition. Solid solutions with x > 0.1 are formed through intermediate phases (Sr5Bi6O14 at x = 0.2; Sr0.78Bi2.22O4 at x = 0.3; and Sr2.25Bi6.75O12.38 at x = 0.4 and 0.5). It was shown that the samples with x = 0.2, 0.3, 0.4, and 0.5 have two phases: one with a cubic Pm3m structure and one with a tetragonal I4/mcm structure.  相似文献   

7.
The temperature dependence of the susceptibility of the paraprocess χpara (T) is investigated for samples in the CuGaxAlxFe2?2xO4 (x = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7), CuGaxAl2xFe2?3xO4 (x = 0.1, 0.2, 0.3, 0.4, 0.5), and GaxFe1? xNiCrO4 (x = 0.0, 0.2, 0.4, 0.6, 0.8) systems. It is found that long-range magnetic order arises in spinel ferrites at the temperature Ttran of the transition from a cluster spin-glass state to a frustrated magnetic structure with a maximum in the temperature dependence of the susceptibility of the paraprocess.  相似文献   

8.
The magnetic behavior of a solid solution, Ca3 x Yx CO2 O6, based on the ‘exotic’ spin-chain compound, Ca3Co2O6, crystallizing in K4CdCl6-derived rhombohedral structure is investigated. Among the compositions investigated(x = 0.0, 0.3, 0.5, 0.75 and 1.0), single-phase formation persists up tox = 0.75, with the elongation of the c-axis. The present investigations reveal that the temperature at which the ‘so-called’ ‘partially disordered antiferromagnetic structure’ sets in (which occurs at 24 K for the parent compound,x = 0.0) undergoes gradual reduction with the substitution of Y for Ca, attaining the value of about 2.2 K for the nominalx = 1.0. The trend observed in this characteristic temperature is opposite to that reported under external pressure, thereby establishing that Y substitution exerts negative chemical pressure. Anomalous steps observed in the isothermal magnetization at very low temperatures (around 2 K) forx = 0.0, which have been proposed to arise from ‘quantum tunneling effects’ are found to vanish by a small substitution (x = 0.3) of Y for Ca. Systematics in AC and DC magnetic susceptibility behavior with Y substitution for Ca have also been probed. We believe that the present results involving the expansion of chain length without disrupting the magnetic chain may be useful to the overall understanding of the novel magnetism of the parent compound.  相似文献   

9.
Neutron and electron diffraction, electrical transport and magnetic measurements have been carried out on a newly synthesized electron doped Sr1-xCe x MnO3 (x = 0.1, 0.2, 0.3 and 0.4) system. For x=0.1, while cooling, it undergoes a first-order metal-insulator transition at 315 K which is associated with a structural transition from cubic (Pm3m) to tetragonal (I4/mcm) due to Jahn-Teller ordering () which stabilizes a chain like (C-type) antiferromagnetic ground state with . The antiferromagnetic insulator state is insensitive to an applied magnetic field of 7 T. With increase of x, while the nuclear structure at room temperature for x=0.2 and 0.3 remains tetragonal, for x=0.4 it becomes orthorhombic (Imma) where the doping electrons seem to occupy mainly the d x2-y2 symmetry. Further, the JT distortion and the antiferromagnetic interactions decrease with doping and a small negative magnetoresistance appears for . Magnetic measurements show that the dilution of antiferromagnetic interaction results into a spin glass like behaviour at low temperature for the samples with x=0.3 and 0.4. This behaviour is in contrast with the CMR properties of calcium based electron doped systems and hole doped manganites. The stability of C-type antiferromagnetic ordering in the electron doped system with large A-site cationic size may be responsible for the absence of double exchange ferromagnetism and CMR effect. Received 10 September 1999  相似文献   

10.
We have synthesized the Pr–BiCo substituted hexaferrites with compositions of Sr0.8-xCa0.2PrxFe12.0-x(Bi0.5Co0.5)xO19 (0.0?≤?x?≤?0.5) by the standard ceramic method. Results of X-ray diffraction analysis exhibits that the synthesized hexaferrites with x from 0.0 to 0.3 are in single magetoplumbite structure, and impurity phases are observed when x?≥?0.4. The surface morphology of magnets shows that hexaferrite grains have a hexagonal platelet shape with clear grain boundaries. The remanence first increases with x from 0.0 to 0.1, and then decreases when x?≥?0.1. The intrinsic coercivity decreases with x from 0.0 to 0.1, and then increases when x?≥?0.1. With x from 0.0 to 0.4, the changing trend of magnetic induction coercivity is in agreement with that of Hcj, while at x?≥?0.4, Hcb decreases. The maximum energy product initially increases with x from 0.0 to 0.2, and then decreases when x?≥?0.2.  相似文献   

11.
Nanoparticles of Mn0.5Zn0.5−xCdxFe2O4 (x=0.0, 0.1, 0.2 and 0.3) have been synthesized by a chemical co-precipitation method. The lattice constant increases with increasing Cd content. X-ray calculations indicate that there is deviation in the cation distribution in the nanostructured spinel ferrite. The dielectric constant and dielectric loss decrease for the samples with Cd content up to x=0.2. However the dielectric constant rises for x=0.3. This is due to an increase in the hopping process at the octahedral (B sites). The dielectric constant increases with increase in temperature, indicating a thermally activated hopping process. The DC resistivity increases with Cd content up to x=0.2 and decreases for Cd content x=0.3. The maximum magnetization of all the samples decreases with increase in Cd content.  相似文献   

12.
A novel class of Co-substituted 3 : 29 materials, Pr3(Fe1−xCox)27.5Ti1.5 (x=0, 0.1, 0.2, 0.3) have been synthesized. Rietveld analysis of X-ray powder diffraction patterns for the x=0, 0.1 and 0.2 compositions showed that nearly all of the compounds are formed in monoclinic symmetry, with A2/m space group with traces of α-Fe, whereas, in x=0.3, additional traces of a (Co/Fe)–Ti (1 : 12) phase are also seen. The saturation magnetization increases with Co concentration both at 5 and 300 K and is explained on the basis of a rigid band model. A magnetic transition is observed for x=0.1 near 240 K. A large increase in Curie temperature, of about 180 K for x=0.1 and about 110 K for the other concentrations, is discussed on the basis of the strengthening of TM–TM exchange by the preferential occupation of Co in some of the Fe sites originally participating in antiferromagnetic bonds.  相似文献   

13.
Ceramic samples of (1 − x)SrTiO3-(x)BiScO3 system with x = 0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 were synthesized. Neither of the end members of this system are ferroelectric materials. X-ray diffraction analysis reveals that at room temperature, the samples with x = 0.2, 0.3, 0.4, and 0.5 consisted of a mixture of two phases: a cubic center-symmetric Pm3m phase and a tetragonal polar P4mm phase. Dielectric permittivity and dielectric losses measurements of these compositions showed anomalies associated with the diffuse phase transition characteristic of ferroelectrics.  相似文献   

14.
The ferrite samples of a chemical formula Ni0.5−xMnxZn0.5Fe2O4 (where x=0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) were synthesized by sol-gel auto-combustion method. The synthesized samples were annealed at 600 °C for 4 h. An analysis of X-ray diffraction patterns reveals the formation of single phase cubic spinel structure. The lattice parameter increases linearly with increase in Mn content x. An initial increase followed by a subsequent decrease in saturation magnetization with increase in Mn content is observed showing inverse trend of coercivity (Hc). Curie temperature decreases with increase in Mn content x. The initial permeability is observed to increase with increase in Mn content up to x=0.3 followed by a decrease, the maximum value being 362. Possible explanation for the observed structural, magnetic, and changes of permeability behavior with various Mn content are discussed.  相似文献   

15.
Reflectivity measurements in fundamental absorption range (3.6–13 eV) have been made on Sn(Se1-xSx)2 mixed compounds for several compositions (x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0). The composition dependence of the energy location of the reflectivity structures is found to be non-linear and different according to the electronic transitions involved. This behaviour is discussed in terms of electronic structure evolution related to the anion substitution.  相似文献   

16.
Nano particles of Mn(0.5–x)NixZn0.5Fe2O4 (x=0.0, 0.1, 0.2, 0.3) have been synthesized by chemical co-precipitation method. The lattice constant and distribution of cation in the tetrahedral and octahedral sites have been deduced through X-ray diffraction (XRD) data analysis. The lattice constant (Å) for all Mn/Ni concentration is found to be less than that for the corresponding bulk values. X-ray intensity calculations indicate that there is deviation in the normal cation distribution. Magnetization decreases with increasing Ni concentration except for x=0.3, where it shows increasing trend. This is due to migration of Fe3+ ions from B-site to A-site, which reduces the B–B coupling and there by the spin canting in the B sublattice. The Curie temperature was found to decrease with increase in nickel concentration except for x=0.3, where it shows a rise. Coercivity is very low and is found to be inversely proportional to the grain size.  相似文献   

17.
Spinal ferrites having the general formula Co1 − x Zn x Fe2 − x Al x O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were prepared using the wet chemical co-operation technique. The samples were annealed at 800°C for 12 h and were studied by means of X-ray diffraction, magnetization and low field AC susceptibility measurements. The X-ray analysis showed that all the samples had single-phase cubic spinel structure. The variation of lattice constant with Zn and Al concentration deviates from Vegard’s law. The saturation magnetization σ s and magneton number n B measured at 300 K using high field hysteresis loop technique decreases with increasing x, suggesting decrease in ferrimagnetic behaviour. Curie temperature T C deduced from AC susceptibility data decreases with x, suggesting a decrease in ferrimagnetic behaviour.   相似文献   

18.
Phase diagrams of as-grown and O2-annealed FeTe1?xSex determined from magnetic susceptibility measurement were obtained. For as-grown samples, the antiferromagnetic order was fully suppressed in the range region x≥0.15, and weak superconductivity appeared when x≥0.1. Beginning at x=0.5, weak superconductivity was found to evolve into bulk superconductivity. Interestingly, for O2-annealed samples, complete suppression of magnetic order and the occurrence of bulk superconductivity were observed when x≥0.1. We found that O2-annealing induces bulk superconductivity for FeTe1?xSex. Oxygen probably plays a key role in the suppression of the magnetic order and the appearance of bulk superconductivity.  相似文献   

19.
Chromium and manganese co-substituted spinel magnesioferrites of the composition Mg1?x Mn x Fe2?2x Cr2x O4 (x?=?0.0, 0.1, 0.2, 0.3, and 0.5) were investigated with X-ray diffraction (XRD), Mössbauer spectroscopy and magnetic measurements. The cation distribution inferred suggests that Mn2+ and Cr3+ ions dominantly occupy the A- and B-sites respectively. The gradual decrease of the hyperfine fields and Curie temperatures with increasing x reflects a gradual weakening in the AB exchange interaction. Mössbauer data of the sample with x = 0.5 is suggestive of cation clustering and/or superparamagnetism. The magnetization data is suggestive of Yafet-Kittel-type canted magnetism.  相似文献   

20.
We have compared the electrical and magnetic properties of Ru(Gd1.5−x Pr x )Ce0.5Sr2Cu2O10−δ (Pr/Gd samples) with x = 0.0, 0.01, 0.03, 0.033, 0.035, 0.04, 0.05, 0.06, 0.1 and RuGd1.5(Ce0.5−x Pr x ) Sr2 Cu2O10−δ (Pr/Ce samples) with x = 0.0, 0.01, 0.03, 0.05, 0.08, 0.1, 0.15, 0.2 prepared by the standard solid-state reaction technique. We obtained the XRD patterns for different samples with various x. The lattice parameters versus x for different substitutions have been obtained from Rietveld analysis. To determine how the magnetic and superconducting properties of these layered cuprate systems can be affected by Pr substitution, the resistivity, and magnetoresistivity, with H ext varying from 0.0 to 15 kOe, have been measured at various temperatures. Superconducting transition temperature T c and magnetic transition T irr , have been obtained through resistivity and ac susceptibility measurements. The T c suppression due to Pr/Gd and Pr/Ce substitutions show competition between pair breaking by magnetic impurities, hole doping due to different valances of ions, difference in ionic radii, and oxygen stoichiometry. Pr/Gd substitution suppresses superconductivity more rapidly than for Pr/Ce, showing that the effect of hole doping and magnetic impurity pair breaking is stronger than the difference in ionic radii. In Pr/Gd substitution, the small difference between the ionic radii of Pr3+,4+ and Gd3+, and absorption of more oxygen due to the higher valence of Pr with respect to Gd, decreases the mean Ru-Ru distance, and as a result, the magnetic exchange interaction becomes stronger with the increase of x. However, Pr/Ce substitution has the opposite effect. The magnetic parameters such as H c , obtained through magnetization measurements versus applied magnetic field isotherm at 77 K and room temperatures, become stronger with x in Pr/Gd and weaker with x in Pr/Ce substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号