首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the present paper we have investigated the high-pressure, structural phase transition of Barium chalcogenides (BaO, BaSe and BaTe) using a three-body interaction potential (MTBIP) approach, modified by incorporating covalency effects. Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and associated volume collapses obtained from TBIP show a reasonably good agreement with experimental data. Here, the transition pressure, NaCl-CsCl structure increases with decreasing cation-to-anion radii ratio. In addition, the elastic constants and their combinations with pressure are also reported. It is found that TBP incorporating a covalency effect may predict the phase transition pressure, the elastic constants and the pressure derivatives of other chalcogenides as well.   相似文献   

2.
Structural stability of TiO and TiN under high pressure   总被引:1,自引:0,他引:1  
The high pressure phase transition and elastic behavior of Transition Metal Compounds (TiO and TiN) which crystallize in NaCl-structure have been investigated using the three body potential model (TBPM) approach. These interactions arise due to the electron-shell deformation of the overlapping ions in crystals. The TBP model consists of a long range Coulomb, three body interactions, and the short-range overlap repulsive forces operative up to the second neighboring ions. The authors of this paper estimated the values of the phase transition pressures, associated volume collapses, and elastic constants, all of which were found to be closer to available experimental data than other calculations. Thus, the TBPM approach promises to predict the phase transition pressure and pressure variations of elastic constants of Transition Metal compounds.   相似文献   

3.
4.
A modified interaction potential (MIPM) model (including the covalency effect) has been developed and applied for the first time to investigate the high-pressure structural phase transition of scandium pnictides (ScAs and ScSb). Phase transition pressures are associated with a sudden collapse in volume indicating the occurrence of first order phase transition. The phase transition pressures and associated volume collapses obtained from present potential model show a generally better agreement with available experimental data than others. The elastic constants and their pressure derivatives are also reported. Moreover, the thermo physical properties have also been obtained successfully. Our results are in good agreement with available experimental and theoretical data.  相似文献   

5.
In this paper we focused on the structural and elastic properties of four transition metal mononitrides (TMNs) (M=Ti, Nb, Hf and Zr) by using realistic three body interaction potential (RTBIP) model, including the role of temperature. These TMN compounds have been found to undergo NaCl (B1) to CsCl (B2) phase transition, at a pressure quite high as compared to other binary systems. We successfully obtained the phase transition pressures and volume changes at different temperatures. In addition, elastic constants of TMNs at different temperatures are discussed. The present theoretical results have been compared with the available experimental data and predictions of LDA theory.  相似文献   

6.
In this article, we have investigated the high-pressure structural phase transition of erbium pnictides (ErX; X?=?N, P and As). An extended interaction potential model has been developed (including the zero-point energy effect in three-body interaction potential model). Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and associated volume collapses have been predicted successfully. The elastic constants, their combinations and pressure derivatives are also reported. The pressure behaviour of elastic constants, bulk modulus and shear modulus have been presented and discussed. Moreover, the thermophysical properties such as molecular force constant (f), infrared absorption frequency (υ 0), Debye temperature (θ D) and Grunneisen parameter (γ) have also been predicted.  相似文献   

7.
We have evolved an effective interionic interaction potential to investigate the pressure-induced phase transitions from zinc blende (B3) to rock salt (B1) structure in II-VI [ZnSe] semiconductors. The elastic constants, including the long-range Coulomb and van der Waals (vdW) interactions and the short-range repulsive interaction of up to second-neighbor ions within the Hafemeister and Flygare approach, are deduced. Keeping in mind that both of the ions are polarisable, we employed the Slater-Kirkwood variational method to estimate the vdW coefficients. The estimated value of the phase transition pressure (P t ) is higher than in the reported data, and the magnitude of the discontinuity in volume at the transition pressure is consistent with that data. The major volume discontinuity in the pressure-volume phase diagram identifies the structural phase transition from zinc blende to rock salt structure.

The variation of second-order elastic constants with pressure resembles that observed in some binary semiconductors. It is inferred that the vdW interaction is effective in obtaining the thermodynamic parameters such as the Debye temperature, the Gruneisen parameter, the thermal expansion coefficient and the compressibility. However, the inconsistency between the thermodynamic parameters as obtained from present model calculations and their experimental values is attributed to the fact that we have derived our expressions by assuming the overlap repulsion to be significant only up to the nearest second-neighbor ions, as well as neglecting thermal effects. It is thus argued that full analysis of the many physical interactions that are essential to binary semiconductors will lead to a consistent explanation of the structural and elastic properties of II–VI semiconductors.  相似文献   

8.
An improved interaction potential model (IIPM) has been formulated to theoretically predict the pressure induced phase transition, elastic properties and thermophysical properties of thorium monopnictides (ThX; X = N, P, As and Sb). The phase transition pressures and volume drop obtained from this model show a better agreement with the available experimental than theoretical results. We have achieved elastic moduli, anisotropy factor, Poisson's ratio, Kleinman parameter, shear and stiffness constants on the basis of the calculated elastic constants. To know the anharmonic properties, we have also computed the third-order elastic constants, first-order pressure derivatives of second-order elastic constants and thermophysical quantities. Our results are in reasonable agreement with available measured and others reported data which supports the validity of model.  相似文献   

9.
This paper reports an investigation of the pressure-induced phase transitions and dependence of elastic constants of ZnS, ZnSe and ZnTe on pressure using a three-body-potential (TBP) approach. The phase-transition pressures and associated volume collapses obtained from this approach show a reasonably good agreement with experimental data. The variations of elastic constants and their combinations with pressure follow a systematic trend, identical to that observed in other semiconductors of the zincblende structure family. It is found that this TBP model has a promise to predict the phase-transition pressure and the pressure variation of elastic constants of other semiconductors as well.  相似文献   

10.
The high pressure phase transition and elastic behavior of rare earth monoselenides (CeSe, EuSe and LaSe) which crystallize in a NaCl-structure have been investigated using the three body interaction potential (TBIP) approach. These interactions arise due to the electronshell deformation of the overlapping ions in crystals. The TBP model consists of a long range Coulomb, three body interactions and the short range overlap repulsive forces operative up to the second neighboring ions. The authors of this paper estimated the values of the phase transition pressure and the associated volume collapse to be closer than other calculations. Thus, the TBIP approach also promises to predict the phase transition pressure and pressure variations of elastic constants of lanthanide compounds.   相似文献   

11.
 利用基于密度泛函的第一性原理,计算了高压下TiN的结构转变、弹性和热力学性质。计算结果表明:在压力作用下,TiN经历了从NaCl型结构到CsCl型结构的转变,转变压力为348 GPa;TiN的弹性系数随着压力的增加呈线性增加规律。此外,还给出了德拜温度和热容量这两个重要热力学量与温度和(或)压力的依赖关系。  相似文献   

12.
We have predicted high pressure structural behavior and elastic properties of alkaline earth tellurides (AETe; AE = Ca, Sr, Ba) by using two body interionic potential approach with modified ionic charge (Z m e). This method has been found quite satisfactory in case of the rare earth compounds. The equation of state curve, structural phase transition pressure from NaCl (B1) to CsCl (B2) phase and associated volume collapse at transition pressure of alkaline earth tellurides (AETe) obtained from this approach, so have been compared with experimentally measured data reveal good agreement. We have also investigated bulk modulus, second and third order elastic constants and pressure derivatives of second order elastic constants at ambient pressure which shows predominantly ionic nature of these compounds. First time, we have calculated the Poisson ratio, Young and Shear modulus of these compounds.   相似文献   

13.
The present paper addresses the high-pressure phase transformation and mechanical properties of Ga1-xInxAs (x = 0.25, 0.5 and 0.75) by formulating an effective interionic interaction potential. This potential consists of the long-range Coulomb and charge transfer caused by the deformation of the electron shells of the overlapping ions and the Hafemeister and Flygare type short-range overlap repulsion extended upto the second neighbor ions and the van der Waals (vdW) interaction. The estimated values of phase transition pressure and the vast volume discontinuity in pressure-volume (PV) phase diagram indicate the structural phase transition from zinc blende (B3) to rock salt (B1). The equation of state curves plotted between V (P)/ V (0) and pressure are for both the zincblende (B3) and rocksalt (B1) structures. Further, the variations of the second and third order elastic constants with pressure have followed a systematic trend, which are almost identical to those exhibited by the observed data measured for other compounds of this family.  相似文献   

14.
To study phase transition and elastic properties at high pressures and high temperatures, we have developed a realistic interaction potential model (RIPZpe) including temperature effects. This model is completely suitable for explaining the inter-atomic interaction involved at high temperature and high pressure as it includes the three-body interaction (TBI) and zero point energy effects. The phase transition of KBr crystal at high pressure and high temperatures including the TBI is done for the first time. We have estimated the phase transition pressures, volume collapses and elastic behaviour at various high pressure and high temperatures by RIPZpe approach and the results found are well suited with available experimental data.  相似文献   

15.
The phase transition of ScSb and YSb from the NaCl-type (B1) structure to the CsCl-type (B2) structure is investigated by the ab initio plane-wave pseudopotential density functional theory method. It is found that the pressures for transition from the B1 structure to the B2 structure obtained from the equal enthalpies are 38.3 and 32.1 GPa for ScSb and YSb, respectively. From the variations of elastic constants with pressure, we find that the B1 phase of ScSb and YSb compounds are unstable when applied pressures are larger than 46.3 and 64.2 GPa, respectively. Moreover, the detailed volume changes during phase transition are analyzed.  相似文献   

16.
基于第一性原理平面波赝势(PWP)和广义梯度近似(GGA)方法,对闪锌矿结构(ZB)和岩盐结构(RS)的ZnSe在0—20GPa高压下的几何结构、态密度、能带结构进行了计算研究,分析了闪锌矿结构ZnSe和岩盐结构ZnSe的几何结构.在此基础上,研究了ZnSe的结构相变、弹性常数、成键情况以及相变压强下电子结构的变化机理.结果发现:通过焓相等原理得到的ZB相到RS相的相变压强为15.3GPa,而由弹性常数判据得到的相变压强为11.52GPa,但在9.5GPa左右并没有发现简单立方相的出现;在结构相变过程中,sp3轨道杂化现象并未消除,Zn原子的4s电子在RS相ZnSe的导电性中起主要贡献.  相似文献   

17.
We have theoretically investigated the effect of pressure on the structural stability of GaP?:?InP mixed system. The three-body-potential (TBP) model has been used. The TBP model consists of long-range as well as short-range interactions; the long-range part includes the modified Coulomb force as well as a three-body term; the short-range part in TBP defines the van der Waals and overlap repulsive interactions. We observe a pressure-induced structural phase transformation from ZnS (B3) to NaCl (B1) type phase in Ga 1?x In x P. Our calculated transition pressures for the initial GaP and final InP compound semiconductors are in good agreement with other reported data.  相似文献   

18.
 运用基于密度泛函理论(DFT)的平面波赝势方法(PWP),结合局域密度近似(LDA)以及广义梯度近似(GGA),系统地研究了ZnO的纤锌矿结构(B4结构),NaCl结构(B1结构)和CsCl结构(B2结构)在不同压强下的几何结构、弹性性质和吸收光谱。详细研究了ZnO发生的两次相变(B4→B1及B1→B2相变),得到了不同近似下的相变压强,以及两次相变过程中其弹性常数随压强的变化,并分析了这种变化与相变的关系。发现在高压作用下,ZnO的吸收光谱发生蓝移。通过计算结果和实验结果的比较可以看出,LDA近似下的计算结果更加符合实验结果。  相似文献   

19.
王金荣  朱俊  郝彦军  姬广富  向钢  邹洋春 《物理学报》2014,63(18):186401-186401
采用密度泛函理论中的赝势平面波方法系统地研究了高压下RhB的结构相变、弹性性质、电子结构和硬度.分析表明,RhB在25.3 GPa时从anti-NiAs结构相变到FeB结构,这两种结构的弹性常数、体弹模量、剪切模量、杨氏模量和弹性各向异性因子的外压力效应明显.电子态密度的计算结果显示,这两种结构是金属性的,且费米能级附近的峰随着压强的增大向两侧移动,赝能隙变宽,轨道杂化增强,共价性增强,非局域化更加明显.此外,硬度计算结果显示,anti-NiAs-RhB的金属性比较弱,有着较高的硬度,属于硬质材料.  相似文献   

20.
Static-compression data and absorption spectra for CsI have been collected to 61 GPa (610 kbar) at room temperature. The band gap closes with increasing pressure and CsI is expected to metallize at 105 (± 15) GPa. A second order phase transition to the CuAu I structure is observed at 39 (± 1) GPa. The elastic constants measured at low pressures do not predict that an elastic instability, and hence a structural distortion, would occur at elevated pressures. Similarly, an ionic pair-potential model which reproduces the properties of CsI at low pressures does not show the distortion to be stabilized at high pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号