首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microstructural evolution and the martensitic transformation (bcc–hcp and bcc–fcc) mechanisms during the solidification process of liquid metal Pb were studied by molecular dynamics simulation. Results indicate that, with the decrease of temperature, the system undergoes two phase transitions: from the liquid state into a metastable bcc phase first and then from the bcc phase into a coexisting crystal structure of hcp and fcc phases. Moreover, the complicated martensitic transformation processes are clearly observed by cluster type index method (CTIM) and the tracing method. The two transformation mechanisms are very analogous at the atomic level; the essential difference between them is that, in the bcc–hcp transformation, two adjacent layers shift in opposite directions, whereas in the bcc–fcc transformation, the top layer and bottom layer shift in opposite directions relative to the middle layer. The specific mechanisms for the bcc–hcp and bcc–fcc transformations are confirmed to correspond to the revised Burgers mechanism and Bain mechanism, respectively.  相似文献   

2.
Ni thin films are prepared on GaAs(100) single-crystal substrates at room temperature by using an ultra-high vacuum radio-frequency magnetron sputtering system. The growth behavior and the crystallographic properties are studied by in-situ refection highenergy electron diffraction and pole-figure X-ray diffraction. In an early stage of film growth, a metastable bcc Ni(100) single-crystal film is formed on GaAs(100) substrate, where the bcc structure is stabilized through hetero-epitaxial growth. With increasing the film thickness, fcc crystals coexist with the bcc(100) crystal. High-resolution cross-sectional transmission electron microscopy shows that the film consists of a mixture of bcc and fcc crystals and that a large number of planar faults exist parallel to the fcc(111) close-packed plane. The results indicate that the bcc structure starts to transform into fcc structure through atomic displacement parallel to the bcc{110} close-packed planes.  相似文献   

3.
We use a polarized light microscope in its orthoscopic and conoscopic arrangements and laser light diffraction to study the effect of particle volume fraction and cell thickness on the microstructure of crystallizing suspensions of negatively charged polystyrene microspheres. Deionized suspensions of these particles nucleate at random sites in the bulk of the suspension to give a variety of structures, orientations and sizes. Orthoscopic observation of the Bragg diffraction colors between crossed polars and conoscopic inspection of the interference figures reveal structural details. We find that the crystallites grow by parallel stacking of the (111) layers to single and twin fcc structures. At moderate volume fractions, Φ ≈ 0.09, the structures are essentially “frozen” in space by their neighbors. At lower concentrations, Φ ≈ 0.05, the crystallites are larger with smoother boundaries and exhibit a range of colors. In thick cells, L ≥ 200 μm, and Φ ≤ 0.05, the colored crystallites become dark with time as they align with the (111) planes parallel to the cell walls. In thin, 50μm cells and Φ ≤ 0.05, this alignment is enhanced. We demonstrate that striated crystallites with lamellae of alternating colors and varying width are polysynthetic fcc twins with (111) twin plane. The number density of twin crystals and the frequency of striations decrease with decreasing volume fraction.  相似文献   

4.
Medium energy ion scattering has been used to investigate depositions of 0.2, 1.4, 3.5 and 4.8 ML of silver onto Al(111). Energy profiles indicate alloying to the extent that aluminium is still visible after the deposition of 4.8 ML. From assessments of the visibility, blocking dips and fits using VEGAS simulations it is shown that the first two layers continue the fcc stacking but after that hcp and fcc twin-type stacking faults occur. The 1.4 ML structure is consistent with a mixed structure of 85% fcc and 15% hcp indicating that some silver occupies a third layer. The blocking curve from the structure formed by 3.5 ML equivalent deposition can be simulated by 56% fcc, 32% hcp and 12% fcc twin and that from 4.8 ML by 59% fcc, 23% hcp and 18% fcc twin. This provides direct evidence of the incidence of hcp stacking when silver is deposited onto Al(111) in the range between 2 and 5 ML.  相似文献   

5.
A completely austenitic structure has been obtained ten times faster via the mechanical alloying (MA) of high-nitrogen 25Cr10Mn1N alloy from metal components and manganese nitride than during the MA of similar steels in a nitrogen atmosphere. A mechanism for the bcc → fcc phase transformation that occurs during MA, and where deformation stacking faults of the layer fault type on the {211} atomic planes of the bcc phase play a key role, is considered and proposed.  相似文献   

6.
对Co100-xMnx合金在GaAs(001)表面的分子束外延生长、晶体结构和磁学性质进行了研究.结果表明,当0100-xMnx合金薄膜是体材料中不存在的体心立方(bcc)结构,并且具有较强的铁磁性,当44100-xMnx合金薄膜最初为bcc结构,随着厚度的增加,逐渐从bcc向面心立方(fcc)结构转化,最后成为完全的fcc结构,薄膜具有较 关键词:  相似文献   

7.
用分子动力学方法模拟了沿〈001〉晶向应变加载和卸载情况下单晶铁中体心立方(bcc)与六方密排(hcp)结构的相互转变,分析了相变的可逆性和微结构演化特征.微观应力的变化显示样品具有超弹性性质,而温度变化表明在相变和逆相变过程中均出现放热现象.相变起始于爆发式均匀形核,晶核由块状颗粒迅速生长为沿{011}晶面的片状分层结构; 而卸载逆相变则从形核开始就呈现片状形态,且相界面晶面指数与加载相变完全一致,表现出形态记忆效应.在两hcp晶核生长的交界面易形成面心立方(fcc)堆垛层错. fcc通过在hcp晶粒内  相似文献   

8.
Highly supersaturated solid solutions of nitrogen in ferrite (bcc) were produced by ball milling of various powder mixtures of α-iron and ε-Fe3N1.08. The microstructure and the crystal structure of the product phases were examined as a function of nitrogen content using X-ray powder diffraction, high-resolution electron microscopy and Mössbauer spectroscopy. It was found that the grain size decreases with increasing nitrogen content. Unexpected shifts of the reflections in the X-ray powder diffraction patterns of the supersaturated N-ferrites, depending on the hkl values of the reflections and nitrogen content, were observed. These shifts cannot be explained by tetragonal distortion of the bcc unit cell, but they are in accordance with the occurrence of a certain type of stacking faults on bcc {211} planes. This result, together with the observation of some isolated fcc crystals (by high-resolution electron microscopy) and a drop in microstrain for high nitrogen contents, demonstrates that unconventional deformation mechanisms are operative in these materials below a certain grain size, leading to a breakdown of the classical Hall–Petch relation for mechanical strengthening.  相似文献   

9.
10.
M. Pratzer  H. J. Elmers   《Surface science》2004,550(1-3):223-232
The structure and electronic properties of ultrathin Co films on W(1 1 0) grown by molecular beam epitaxy in UHV were investigated by low energy electron diffraction (LEED) and scanning tunneling microscopy and spectroscopy (STM and STS). For coverages above 0.7 ML the pseudomorphic (ps) monolayer is transformed gradually into close-packed (cp-) monolayer areas, showing up as separated islands that increase in size with coverage until the cp-monolayer is complete. Two different structures of the cp-monolayer were observed by atomically resolved STM, both leading to a 8 × 1 superstructure in the LEED pattern. Higher coverages continue to grow in the Stransky–Krastanov growth mode forming simultaneously double layer islands and triple layer islands in fcc(1 1 1) and hcp(0 0 0 1) stacking. STS reveals tunneling spectra that differ considerably depending on the thickness and on the structure. Two different classes of triple layer islands can be distinguished by a resonant peak at +0.3 eV appearing in only one of the two classes. We attributed this behavior to a different stacking according to a fcc or hcp structure.  相似文献   

11.
Epitaxial Co/Mn multilayers (0.75 to 6 nm Co, 0.4 nm Mn layer thickness) have been grown on mica substrates covered by a (0002) Ru buffer layer. The structural properties of these layers have been studied using X-ray diffraction, nuclear magnetic resonance (NMR), and high resolution transmission electron microscopy (HRTEM). The Co layers, grown as face centred cubic (fcc), were found to be stabilised by the very thin Mn layers. Data obtained using X-ray diffraction and NMR were analysed and found to be in good agreement, while Monte-Carlo simulations were used to interpret the data and calculate the expected diffracted intensity and NMR spectra. The HRTEM data show that the Mn layers give rise to a large strain contrast extending, in the growth direction, over a distance which exceeds the thickness of the Mn layers. The superlattices could be described as having an fcc structure containing randomly located stacking faults with varying densities. The results verify the presence of a dominant, almost perfect phase of fcc stacking, and of a faulted hcp phase, while the number of defects increases with the Co layer thickness. Received 27 October 1999 and Received in final form 29 May 2000  相似文献   

12.
Abstract

The structural energy differences have been calculated for zirconium as a function of pressure at zero temperature using the Andersen force theorem and the linear muffin tin orbital method. The structures included are the following: α (hcp), the room temperature room pressure phase, ω- a three atom simple hexagonal, bcc and fcc. Our calculations show that the bcc structure would become energetically most favourable above 11 GPa. This results is in agreement with well known correlation between the crystal structure and the d-electron population in transition metals at normal volume. The diamond anvil cell based high pressure x-ray diffraction experiments are in progress to verify this result.  相似文献   

13.
梅继法  黎军顽  倪玉山  王华滔 《物理学报》2011,60(6):66104-066104
基于嵌入原子势考察体心立方(bcc)金属Ta的广义层错能和广义孪晶能并获得广义层错能和广义孪晶能曲线. 研究表明,bcc Ta的广义层错能曲线与面心立方金属的广义层错能曲线有明显差异,Ta的广义层错能曲线不存在明显的能量极小值,位错主要以全位错的形式发射. 不同原子厚度的广义孪晶能曲线表明4个原子层的孪晶能曲线开始出现亚稳定的能量极小值,5个原子层的孪晶能曲线出现稳定的能量极小值. 为进一步验证广义层错能和广义孪晶能曲线揭示的塑性变形机理,采用准连续介质力学多尺度方法研究Ⅱ型裂纹尖端的初始塑性变形过程. 关键词: 广义层错能 广义孪晶能 体心立方金属钽 Ⅱ型裂纹  相似文献   

14.
郭常霖 《物理学报》1982,31(11):1526-1533
用腐蚀法研究了β-SiC外延层中的晶体缺陷。腐蚀剂为熔融氢氧化钾。三角形尖底蚀坑对应于位错。在β-SiC中的全位错为立方晶系的73°位错和60°位错。不同堆垛方式的β-siC生长层相遇时将形成{111}交界层错,其腐蚀图象为平行于<110>方向的直线。60°位错可分解为两个1/6<112>SchockLey不全位错,并夹着一片{111}层错构成扩展位错。三个1/6<110>压杆位错与三片{111}层错可构成层错锥体。正、反堆垛的β-SiC可形成尖晶石律双晶,双晶面为(111)。腐蚀法和X射线劳厄法证实了这种双晶的存在。 关键词:  相似文献   

15.
 用能带论LMTO方法,在对bcc、fcc锂的能带结构进行自洽计算的基础上,对两种结构的物态方程做了计算。压缩比1~12、压力至103 GPa的计算结果分别与实验(σ<3)及TF统计模型进行了比较。通过对总能的计算,研究了晶体结构的稳定性。说明在我们所研究的压力范围内,fcc结构比bcc结构更稳定。  相似文献   

16.
C. X. Huang  G. Yang  B. Deng  S. D. Wu  S. X. Li 《哲学杂志》2013,93(31):4949-4971
An ultra-low carbon austenitic stainless steel was successfully pressed from one to eight passes by equal channel angular pressing (ECAP) at room temperature. By using X-ray diffraction, optical microscopy and transmission electron microscopy, the microstructural evolution during ECAP was investigated to reveal the formation mechanism of strain-induced nanostructures. The refinement mechanism involved the formation of shear bands and deformation twins, followed by the fragmentation of twin lamellae, as well as successive martensite transformation from parent austenitic grains with sizes ranging from microns to nanometres through the processes γ(fcc)?→?ε(hcp)?→?α′(bcc). After pressing for eight passes, two types of nanocrystalline grains were achieved: (a) nanocrystalline austenite with a mean grain size of ~31?nm and (b) strain-induced nanocrystalline α′-martensite with a size of ~74?nm. The formation mechanisms are discussed in terms of microstructural subdivision via deformation twinning and martensite transformation.  相似文献   

17.
Constant-pressure, constant-temperature molecular dynamics simulations are carried out to study the behaviour of the microscopic atomic structure via the melting and crystallization processes of a model system composed of 864 Lennard-Jones (LJ) particles with periodic boundary conditions. On heating an fcc crystal of LJ particles, it is ascertained that melting takes place. On the other hand, a LJ liquid, when quenched slowly, crystallizes into a stacking of layers with stacking faults where each layer forms a close-packed structure with occasional point defects. A large hysteresis in the volume-temperature curve is observed.  相似文献   

18.
We examine via molecular simulation the dependence of the crystal-melt interfacial free energy gamma on molecular interaction and crystal structure (fcc vs bcc) for systems interacting with inverse-power repulsive potentials, u(r)=epsilon(sigma/r)(n), 6< or =n< or =100. Both the magnitude and anisotropy of gamma are found to increase as the range of the potential increases. Also we find that gamma(bcc)相似文献   

19.
J. Wang  N. Li  A. Misra 《哲学杂志》2013,93(4):315-327
Σ3 grain boundaries form as a result of either growth twinning or deformation twinning in face centered cubic (fcc) metals and play a crucial role in determining the mechanical and electrical properties and microstructural stability. We studied the structure and stability of Σ3 grain boundaries (GBs) in fcc metals by using topological analysis and atomistic simulations. Atomistic simulations were performed for Cu and Al with empirical interatomic potentials to reveal the influence of stacking fault energy on the morphology of the twinned grains. Three sets of tilt Σ3 GBs were studied with respect to the tilt axis parallel to ?111?, ?112?, and ?110?, respectively. We showed that Σ3{111} and Σ3{112} GBs are thermodynamically stable and the others will dissociate into terraced interfaces regardless of the stacking fault energy. The morphology of the nano-twinned grains in Cu is predicted from the above analysis and found to match with experiments.  相似文献   

20.
M De  S P Sen Gupta 《Pramana》1984,23(6):721-744
This review concerns our recent investigations with a series of binary fcc Ag- and Cu-base alloys (viz Ag-Ga, Ag-Ge, Ag-Al and Cu-Ga, Cu-Ge) from detailed analyses of x-ray diffraction line profiles, the importance of which has been briefly summarized. The theoretical formulations of the Warren-Averbach’s method of Fourier analysis of peak-shapes along with the methods of peak-shift and peak-asymmetry have been outlined. A preview on the significant studies carried out earlier with Ag- and Cu-base (fcc) binary alloys has been made in short. A detailed analyses on the recorded profiles in the present considerations revealed, in general, quantitative estimates of several microstructural parameters characterising the deformed state of the materials namely, propensity of stacking faults (intrinsic, extrinsic and twin faults), rms microstrains, coherent domain sizes, long-range residual stresses, lattice parameter changes, dislocation density and stacking fault energy. The results indicate a general trend of increase in the concentrations of stacking faults, primarily, of intrinsic character, with increase in solute concentrations; which are solely responsible for the observed peak-shifts as well as domain size broadening. Small asymmetry in the profiles is due to the presence of extrinsic stacking faults, relatively less in magnitude compared to the intrinsic ones while the deformation twin faults are almost absent—an observation with significance. The dislocation density, quite appreciable in magnitude, has been evaluated from the anisotropic values of the coherent domain sizes and rms microstrains. The stacking fault energies of pure Ag and Cu, an important parameter have also been estimated and compared with those obtained from electron microscopy. Annealing experiments with a Ag-5·8% Al alloy, aluminium being a precipitating solute, do not reveal any detectable evidence of solute segregation at the stacking faults. The occurrence of stacking faults in the alloy systems has been correlated with a number of physical factors involving solvent-solute types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号