首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BaTiO3–Bi0.5Na0.5TiO3 is one of the promising candidates as a high-temperature relaxor with a high Curie temperature and several preferred dielectric characteristics. It has been found experimentally for a long time that adding calcium to BaTiO3–Bi0.5Na0.5TiO3 improves its temperature characteristic of the capacitance [J. Electron. Mater. 39, 2471]. In this study, Calcium (Ca) defects in perovskite BaTiO3 and Bi0.5Na0.5TiO3 have been studied based on first-principles calculations. In both BaTiO3 and Bi0.5Na0.5TiO3, our calculations showed that Ca atom energetically prefers to substitute for the cations, that is Ba, Bi, Na and Ti, depending on the growth conditions. In most cases, Ca predominantly substitutes on the A-site without providing additional electrical carriers (serve as either neutral defects or self-compensating defects). The growth conditions where Ca can be forced to substitute for B-site (with limited amount) and the conditions where Ca can be forced to serve as an acceptor are identified. Details of the local structures, formation energies and electronic properties of these Ca defects are reported.  相似文献   

2.
In the present work, lead-free piezoelectric ceramics (Na0.5Bi0.5)TiO3xCuO–yNiO (for x = 0.0, 0.02, 0.04 and 0.06) have been prepared by a conventional solid-state reaction method. An investigation of CuO and NiO doping in bismuth sodium titanate (BNT) and a study of the structure, morphology, and dielectric and ferroelectric properties of the NBT–CuNi system have been conducted. Phase and microstructural analysis of the (Na0.5Bi0.5)TiO3 (NBT) based ceramics has been carried out using X-ray diffraction and scanning electron microscopy (SEM) techniques. Field emission scanning electron microscopy (FE-SEM) images showed that inhibition of grain growth takes place with increasing Cu and Ni concentration. The results indicate that the co-doping of NiO and CuO is effective in improving the dielectric and ferroelectric properties of NBT ceramics. Temperature-dependent dielectric studies have also been carried out at room temperature to 400 °C at different frequencies. The NBT ceramics co-doped with x = 0.06 and y = 0.06 exhibited an excellent dielectric constant ?r = 1514. The study suggests that there is enormous scope of application of such materials in the future for actuators, ultrasonic transducers and high-frequency piezoelectric devices.  相似文献   

3.
Artificial multiferroic superlattices (SL), consisting of BiFeO3 (16 nm)/Bi0.5Na0.5TiO3 (5 nm) (BFO/BNT SL), were grown on (001) SrTiO3 single crystal by pulsed laser deposition method. The cross-sectional, surface morphology, and crystallographic structure of BFO/BNT SL and BFO single layer were investigated. It was found that the electrical, ferroelectric, and magnetic properties of BFO/BNT SL exhibit a remarkably enhancement compared with BFO single layer. The influence of BNT buffering layer, lattice strain, and interfaces interplay of the SL structure are supposed to benefit their ferroelectric and ferromagnetic properties. Our works suggested the BFO/BNT SL with an improved multiferroic characteristics have a promising application for the future informational storage devices.  相似文献   

4.
郭常霖  吴毓琴  王天宝 《物理学报》1982,31(8):1119-1122
用X射线衍射方法测定了K0.5Bi0.5TiO3—Na0.5Bi0.5TiO3系统不同组分试样的点阵常数和相变温度,确定了四方-三方相界组成。给出了K0.5Bi0.5TiO3和Na0.5Bi0.5TiO3的多晶X射线衍射数据。 关键词:  相似文献   

5.
A. Bouhemadou 《哲学杂志》2013,93(12):1623-1638
The structural, elastic, electronic and thermal properties of M2SbP (M = Ti, Zr and Hf) were studied by means of a pseudo-potential plane-wave method based on the density functional theory within both the local density approximation and the generalised gradient approximation. The optimised zero-pressure geometrical parameters, i.e. the two unit cell lengths (a, c) and the internal coordinate (z), were in good agreement with available experimental and theoretical data. The effect of high pressure, up to 20 GPa, on the lattice constants shows that the contractions along the a-axis were higher than along c-axis. The anisotropic independent elastic constants were calculated using the static finite strain technique. Numerical estimations of the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, average sound velocity and Debye temperature for ideal polycrystalline M2SbP aggregates were performed in the framework of the Voigt–Reuss–Hill approximation. The calculated band structures show that all studied materials are electrical conductors. Analysis of the atomic site projected densities showed that the bonding is of covalent–ionic nature with the presence of metallic character. The density of states at the Fermi level is dictated by the transition metal d–d bands; the Sb element has little effect. Thermal effects on some macroscopic properties of M2SbP were predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variations of the volume expansion coefficient, heat capacity and Debye temperature with pressure and temperature in the ranges 0–50 GPa and 0–2000 K were obtained successfully.  相似文献   

6.
Lead-free piezoelectric ceramics (1 − x − y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBiGaO3 have been fabricated by an ordinary sintering technique, and their structure and electrical properties and depolarization temperature have been studied. The results of X-ray diffraction reveal that Bi0.5K0.5TiO3 and BiGaO3 diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure. An obvious change in microstructure with increasing concentration of Bi0.5K0.5TiO3 and BiGaO3 was observed. The piezoelectric constant d33 and the electromechanical coupling factor kp of the ceramics attain maximum values of 165 pC/N and 0.346 at y = 0.01(x = 0.18) and x = 0.21(y = 0.01), respectively. The temperature dependence of dielectric constant indicates an obvious relaxor characteristic with strong frequency dependence of dielectric constant. The depolarization temperature decreased with increasing content of BiGaO3 and first decreases and then increases with increasing amount of Bi0.5K0.5TiO3.  相似文献   

7.
The structural, elastic, electronic and thermodynamic properties of the rhombohedral topological insulator Bi2Se3 are investigated by the generalized gradient approximation (GGA) with the Wu–Cohen (WC) exchange-correlation functional. The calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA calculations indicate that Bi2Se3 is a 3D topological insulator with a band gap of 0.287 eV, which are well consistent with the experimental value of 0.3 eV. The pressure dependence of the elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus E, and Poisson’s ratio σ of Bi2Se3 are also obtained successfully. The bulk modulus obtained from elastic constants is 53.5 GPa, which agrees well with the experimental value of 53 GPa. We also investigate the shear sound velocity VS, longitudinal sound velocity VL, and Debye temperature ΘE from our elastic constants, as well as the thermodynamic properties from quasi-harmonic Debye model. We obtain that the heat capacity Cv and the thermal expansion coefficient α at 0 GPa and 300 K are 120.78 J mol?1 K?1 and 4.70 × 10?5 K?1, respectively.  相似文献   

8.
Lead-free Na0.5Bi0.5TiO3 (NBT) and (1 ? x)Na0.5Bi0.5TiO3 + xBaTiO3 with x = 0.1 and 0.2 (where x = 0.1 and 0.2 are named as NBT1 and NBT2, respectively), (1 ? y)Na0.5Bi0.5TiO3 + yBa0.925Nd0.05TiO3 with y = 0.1 and 0.2 (where y = 0.1 and 0.2 are named as NBT3 and NBT4, respectively)-based relaxor ferroelectric ceramics were prepared using the sol-gel method. The crystal structure was investigated by X-ray diffraction (XRD) at room temperature (RT). The XRD patterns confirmed the presence of the rhombohedral phase in all the samples. The electrical properties of the present NBT-based samples were investigated by complex impedance and the modulus spectroscopy technique in the temperature range of RT–600 °C. The AC conductivity was found to increase with the substitution of Ba2+ ions to the NBT sample whereas it significantly decreased with the addition of Nd3+ ions. The more anion vacancies in Ba-added samples and the lower anion vacancies in Nd-added samples were found to be responsible for higher and lower conductivities, respectively.  相似文献   

9.
The combination effect of cation vacancies and O2 adsorption on ferromagnetism of Na0.5Bi0.5TiO3(100) surface is studied by using density functional theory.An ideal Na0.5Bi0.5TiO3(100) surface is non-magnetic and the cation vacancy could induce the magnetism.By comparing the formation energies for Na,Bi and Ti vacancy,the Na vacancy is more stable than the others.Therefore,we focus on the configuration and electric structure for the system of O2 molecule adsorption on the Na0.5Bi0.5TiO3(100) surface with a Na vacancy.Among the five physisorption configurations we considered,the most likely adsorption position is Na vacancy.The O2 adsorption enhances the magnetism of the system.The contribution of spin polarization is mainly from the O 2p orbitals.The characteristics of exchange coupling are also calculated,which show that the ferromagnetic coupling is favorable.Compared with the previous calculation results,our calculations could explain the room-temperature ferromagnetism of Na0.5Bi0.5TiO3 nanocrytalline powders more reasonably,because of taking into account adsorbed oxygen and cation vacancies.Moreover,our results also show that adsorption of O2 molecule as well as introduction of cation vacancies may be a promising approach to improve multiferroic materials.  相似文献   

10.
Eu3+-doped Na0.5Bi0.5TiO3 (Eu:NBT) single crystals were grown by a top-seeded solution growth method. Photoluminescence emission and excitation spectra of Eu:NBT were investigated. The two transitions in 7F0 → 5D0 excitation spectra reveal that Eu3+ ions were incorporated into two adjacent crystallographic sites in NBT, i.e., Bi3+ and Na+ sites. The former has a symmetrical surrounding, while the later has a disordered environment, which was confirmed by decay curve measurements. The dielectric dispersion behavior was depressed and the piezoelectric and ferroelectric properties were improved after Eu doping.  相似文献   

11.
Lead‐free (Na0.5Bi0.5)0.94TiO3–Ba0.06TiO3 (NBT‐BT6) nanofibers were synthesized by the sol–gel process and electrospinning, and a butterfly‐shaped piezoelectric response was measured by scanning force microscopy. NBT‐BT6 nanofibers with perovskite phase were formed, after being cleaned at 700 °C for 1 hour, and the diameters are in the range of 150 nm to 300 nm. The average value of the effective piezoelectric coefficient d33 is 102 pm/V. The high piezoelectricity may be attributed to the easiness for the electric field to tilt the polar vector of the domain and to the increase of the possible spontaneous polarization direction. There is a potential for the application of NBT‐BT6 nanofibers in nanoscale piezoelectric devices. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Based on first-principles calculations, we have investigated the elastic properties and electronic structure of a new MAX compound (Cr0.5V 0.5)2GeC. The obtained lattice parameters agree very well with available experimental and theoretical data. Elastic constants are calculated, then the mechanical properties such as compressibility, ductility and stiffness, especially elastic anisotropy of (Cr0.5V 0.5)2GeC are discussed in detail. The calculated charge density and density of state exhibit a mixture of covalent and ionic features in (Cr0.5V 0.5)2GeC due to the strong hybridization of C 2p with Cr 5d and V 4d states. The coexistence of the stronger and stiffer Cr–C and V–C covalent bonds reveals the underlying mechanism for the higher bulk modulus of (Cr0.5V 0.5)2GeC.  相似文献   

13.
Abstract

Dielectric permittivity studies of Na0.5Bi0.5TiO3 single crystals in a broad range of frequency up to 10 MHz and temperature 300—823 K are reported. In this temperature range dielectric dispersion below 1 MHz has been found. The obtained data were fitted to the Cole-Cole relation. The mean relaxation time τ is strongly temperature dependent (0.04 ? 2.6 × 10?5 s). A remarkable hysteresis effect in the values of τ on cooling and heating took place. The Δε(T) dependence (the maximal value of Δε ~ 400) is similar to the global ε′(T) response at low frequency. An isothermal structural transformation in Na0.5Bi0.5TiO3 was observed by X-ray measurements. The order of the time in which the transformation takes place (~300 minutes) corresponds to the time in which the strongest time evolution of electric permittivity and time changes of dielectric dispersion were detected.  相似文献   

14.
0.85Bi0.5Na0.5TiO3-0.15Bi0.5K0.5TiO3 (BNKT15) lead-free thin films were prepared on Pt(111)/TiO2/SiO2/Si(100) substrates by the chemical solution deposition method. BNKT15 are MPB composition in the Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 (BNT-BKT) system. The maximum piezoelectric coefficient (d33,f) value of BNKT15 thin film is approximately 75 pm/V, which is comparable to that of polycrystalline PZT thin films. These results suggest that BNKT15 thin film can be used as an alternative for PZT films in piezoelectric micro-electromechanical systems.  相似文献   

15.
Bi0.5Na0.5TiO3 (BNT)-doped BaFe0.5Nb0.5O3 (BFN) ceramics were synthesized by a two-step solid-state reaction. Temperature dependence of dielectric properties measured at different frequencies was investigated over broad temperature and frequency ranges. Impedance spectroscopy and universal dielectric response were employed to study the relaxation behavior and conductivity mechanism of the ceramics in a frequency range from 40 Hz to 100 MHz and a temperature range from 300 K to 800 K. The complex plane impedance data revealed the bulk and grain boundary contributions toward conductivity processes in the form of semicircular arcs. The high-temperature conductivity of ceramics is attributable to thermally activated second ionized oxygen vacancy.  相似文献   

16.
The study aims at the elastic, mechanical, electronic properties and hardness of Nb2AsC using first principles based on the density functional theory method within the generalised gradient approximation. The calculated lattice parameters of Nb2AsC are in good agreement with the experimental data. The five independent elastic constants are firstly calculated as a function of pressure, and our results indicate that it is mechanically stable in the applied pressure. The elastic anisotropy is examined through the computation of the direction dependence of Young's modulus. The pressure dependences of the bulk modulus, shear modulus, average velocity of acoustic waves and Debye temperature of Nb2AsC are systematically investigated. The band structure and density of states are discussed, and the results show that the strong hybridisations C p–Nb d and As p–Nb d would be beneficial to the structure stability of Nb2AsC. Based on the Mulliken population analysis, the hardness of Nb2AsC is predicted.  相似文献   

17.
First principles calculations were performed in the framework of the density functional theory (DFT) using the Full Potential–Linear Augment Plane Wave method (FP–LAPW) within the generalized gradient approximation (GGA) to predict the structural, electronic, elastic and thermal properties of NiTi2 intermetallic compound. By using the Wien2k all-electron code, calculations of the ground state and electronic properties such as lattice constants, bulk modulus, presure derivative of bulk modulus, total energies and density of states were also included. The elastic constants and mechanical properties such as Poisson’s ratio, Young’s modulus and shear modulus are estimated from the calculated elastic constants of the single crystal. Through the quasi-harmonic Debye model, the preasure and temperature dependences of the linear expansion coefficient, bulk modulus and heat capacity have been investigated. Finally, the Debye temperature has been estimated from the average sound velocity according to the predicted polycrystal bulk properties and from the single crystal elastic constants.  相似文献   

18.
The structures, elastic properties and intrinsic hardness of B-O bonds of KTa0.5Nb0.5O3 crystal in paraelectric and ferroelectric phase structures have been investigated by means of the density functional theory. Both structures are found to be elastically stable and in good agreement with available results. The elastic properties including the bulk modulus, shear modulus and Young’s modulus change largely during phase transition. The paraelectric KTa0.5Nb0.5O3 crystal is more incompressible and harder than ferroelectric phase. The hardness of KTa0.5Nb0.5O3 crystal is mostly determined by Nb-O bonds and the modifications of the bond strength affect the hardness of the crystal. Charge density contours indicate that the electronic distributions between B-O bonds play an important role in the formation of elastic properties.  相似文献   

19.
The structural, electronic, elastic and thermodynamic properties of α-phase Na3N under pressure are investigated by performing first principles calculations within generalized gradient approximation. The elastic constants, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio dependencies on pressure are also calculated. The thermodynamic properties of the α-phase Na3N are calculated using the quasi-harmonic Debye model. The dependencies of the heat capacity and the thermal expansion coefficient, as well as the Grüneisen parameter on pressure and temperature are investigated systematically in the ranges of 0–1 GPa and 0–100 K.  相似文献   

20.
ABSTRACT

The existence of Bi-fluctuation dispersing in Na0.5Bi0.5TiO3 (NBT) relaxor ferroelectric is hinted in other recent studies. However, this fluctuation has not been directly observed yet. We introduce the Bi-rich nano-regions with different sizes in a series of NBT ceramics by the slight excess of Bi3+ content. The crystal symmetries of the Bi-rich nano-regions and the NBT matrix are rhombohedral. The lattice parameters of the nano-regions are larger than those of the matrix in NBT ceramics, which were confirmed by the X-ray diffraction Rietveld refinement, TEM techniques and first-principles calculation. Also, the disorder-induced nano-regions appearing as Bi-fluctuation are associated with the complex phase transitions and the high-frequency relaxor behaviour of NBT suggested by the dielectric measurements and Raman spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号