首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural phase transitions in triammonium hydrogen disulfate crystals and deuterated crystals below room temperature have been studied by X-ray diffraction. Three phases are observed in the temperature range from 25°C down to — 160°C. The space groups in three different phases are identified as C2/c, P2/n (or Pn), and C2 for (NH4)3H(SO4)2 and (ND4)3D(SO4)2 crystals. No isotope effect on the structural phase transitions in these crystals could be detected by these studies. The occurrence of structural phase transitions caused by the reorientation of SO4 groups and/or the shift of oxygen atoms from the sulfate atom in the SO4 group are suggested from the diffraction photographs.  相似文献   

2.
The structural phase transitions and the electrical behaviour of the complex perovskite PbLu1/2Nb1/2O3 have been investigated using X-ray powder diffraction, dielectric constant measurements, differential scanning calorimetry and measurement of the polarisation as a function of applied electric field. The high-temperature paraelectric phase is highly ordered. A first-order paraelectric-antiferroelectric phase transition occurs at 270°C and an antiferroelectric-ferroelectric phase transition, characterised by dispersion in the curves of dielectric constant as a function of temperature, occurs at ≈ 30°C. The antiferroelectric phase is isostructural with the orthorhombic form of PbYb1/2Nb1/2O3. The low-temperature ferroelectric phase also has an orthorhombic crystal structure.  相似文献   

3.
4.
The nanocrystalline LaMnO3+δ perovskite was synthesized by the microwave-assisted glycothermal method and calcined at several temperatures up to 1500°C. The prepared samples were examined by the X-ray powder diffraction with the aim to show that LaMnO3+δ exhibits the size-induced structural phase transitions. The as-received nanocrystals of LaMnO3+δ are of tetragonal, pseudo-cubic symmetry not known for bulk material. The samples calcined at temperatures 750–1100°C have trigonal symmetry known from the high-temperature phase of LaMnO3 single crystal. The samples calcined from 1200°C to 1500°C have two phases: trigonal and orthorhombic. Thus, the observed phase sequence is inverted with respect to that of the bulk material, which is the characteristic of the size-induced mechanism of phase transitions in the nanocrystals. The critical crystallite sizes for both structural transitions were evaluated as 20 and 100?nm.  相似文献   

5.
It is found that it is rather easy to introduce dislocations into KNbO3. With transmission electron microscopy we have determined the slip plane to be (110) and the Burgers vector of dislocations to be [110]. Using hot stage in a JEM-200CX electron microscope, we have made in situ observations during phase transitions at 435°C (cubic-tetragonal) and 225°C (tetragonal-orthorhombic). We have found evidence indicating the interactions between dislocations and ferroelectric domains. Especially during phase transitions, the new ferroelectric phase first appear in the vicinity of dislocations showing that the stress field of dislocations may raise Curie point of the crystals.  相似文献   

6.
A narrow part of Fe2O3–Bi2O3 phase diagram was re-investigated in order to elaborate single crystals of the multiferroic BiFeO3 (BFO). Centimeter-size single crystals were successfully obtained by flux method, and present a preferred growth direction. X-ray diffraction studied have highlighted that the growth direction is along the polar axis [111] r of the structure. The stability of BFO versus temperature (reversible ferroelectric transition followed by multiple irreversible decompositions) is discussed in the light of Differential Scanning Calorimetry (DSC) analysis performed between 25 and 1400°C.  相似文献   

7.
The birefringence of LiKSO4 has been measured over the range 27–700°C. The change in birefringence with heating and cooling is seen to be very different. Observations have been made on domains in (001) and (100) plates near the phase transitions.  相似文献   

8.
The microscopic mechanism of the successive cubic-tetragonal-orthorhombic-rhombohedral phase transitions in KNbO3 is discussed quantitatively from the microscopic free energy based upon the mean field approximation where the Nb ions are displaced to create spontaneous deformations. From the calculation of the microscopic free energy, it is shown that the order of the phase transitions and the experimental values of the transition entropy in KNbO3 are well explained by this model.  相似文献   

9.
Volume phase-hologram formation by the photorefractive effect in KNbO3 is accompanied by a stationary energy transfer between writing beams. The change in energy transfer by applying an electric field on the reduced crystals is shown to be due to an efficient increase in migration length which can reach values comparable or larger than the fringe spacing. It is demonstrated that photovoltaic contribution to the diffraction efficiency and energy transfer is rather small in reduced KNbO3 and that diffusion of photogenerated free holes is the dominant charge transport for the photorefractive effect in unbiased crystals. The experimental results for diffraction efficiency and energy transfer as a function of grating spacing, electric field, light intensity and temperature is well described by a recent theory of Kukhtarev and Vinetskii.  相似文献   

10.
The electrical conductivity of ZrO2 doped with Co3O4 has been measured at various temperatures for different molar ratios. The conductivity increases due to the migration of vacancies created by doping. The conductivity is also found to increase with rise in temperature up to 120°C, and after attaining a maximum the conductivity decreases due to a collapse of the lattice framework. A second rise in conductivity around 460°C in all the compositions confirms the phase transition in ZrO2 from monoclinic to tetragonal symmetry. X-ray powder diffraction and DTA studies were carried out for confirming the doping effects and the transition in ZrO2.  相似文献   

11.
Order-disorder phase transformation has been observed in ZrS2 single crystals on annealing them at a temperature of 400 ± 10°C. Loss of sulphur, resulting in its deficiency, on annealing of crystals is thought to be the cause of the observed phase transformation. Evidence in its support, based on X-ray and electron diffraction results, is advanced.  相似文献   

12.
The ferrodistortive phase transition in the bis-tetramethylammonium tetrabromide crystals below room temperature is studied within the framework of the Landau theory. The specific heats of [N(CH3)4]2MnBr4 and [N(CH3)4]2ZnBr4 are correctly described down to 40°C below the transition temperature. The phenomenological parameters are determined from calorimetric results, elastic constants and thermal expansion data. Using these coefficients, the monoclinic angle in the ferrodistortive phases is obtained. The anharmonic quantities, such as the isothermal compressibility, calculated from the specific heat data, are in good agreement with the values derived from the elastic measurements.  相似文献   

13.
As a new member in the family of Mott system, perovskite PbCrO3 has recently been uncovered to exhibit fantastic structural transition under pressure, coupled with magnetic, electronic, and ferromagnetic transitions, which provide many opportunities for understanding of correlated system. However, it is still challenging to synthesize high-quality single-crystal PbCrO3, leading to the limited exploration of this Mott compound. In this work, we formulate a new high-pressure reaction route for preparation of high-quality PbCrO3 crystals between PbCl2 and Na2CrO4 at high pressure of 5–10?GPa and at high temperature of 750–1500°C. Because of the formation of reaction byproduct NaCl, the final product can readily be separated by washing with water. The obtained sample is in the form of single crystal with crystallite size up to 200?μm. In addition, combined with X-ray diffraction measurement, a tentative pressure-temperature synthesis diagram of PbCrO3 is mapped out from the reaction between PbCl2 and Na2CrO4 and the reaction mechanism is also explored in detail.  相似文献   

14.
Abstract

High-pressure neutron diffraction experiments have been performed at room temperature on a powdered sample of the perovskite type-layer compound (CD3ND3)2MnCl4. A phase transition from the orthorhombic room-temperature phase (ORT) to a new high-pressure phase (HP) is demonstrated at 20.5 ± 0.2 kbars. A monoclinic unit cell with lattice parameters a = 6.824 (5) Å; b = 7.409 (8) Å c = 17.126 (12) Å and β = 82.94(9)° has been inferred for the HP phase, consistent with a two-dimensional perovskite-type structure. The HP phase appears to be much more compact than ORT; it is characterized, in particular, by an important compression (?10%) of the inter-layer distance. Space groups P2/c or P21/c consistent with the experimental data have been deduced for the HP phase, after group theoretical considerations based on shear transformation and order-disorder mechanisms.  相似文献   

15.
Niobium oxide nanocrystals were successfully synthesized employing the green synthesis method. Phase formation, microstructure and compositional properties of 1, 4 and 7 days incubation treated samples after calcinations at 450 °C were examined using X-ray diffraction, Raman, photoluminescence (PL), infrared, X-ray photoelectron spectra and transmission electron microscopic characterizations. It was observed that phase formation of Nb2O5 nanocrystals was dependent upon the incubation period required to form stable metal oxides. The characteristic results clearly revealed that with increasing incubation and aging, the transformation of cubic, orthorhombic and monoclinic phases were observed. The uniform heating at room temperature (32 °C) and the ligation of niobium atoms due to higher phenolic constituents of utilized rambutan during aging processing plays a vital role in structural phase transitions in niobium oxide nanocrystals. The defects over a period of incubation and the intensities of the PL spectra changing over a period of aging were related to the amount of the defects induced by the phase transition.  相似文献   

16.
Bulk nanocomposites ZnO–SnO2–TiO2 were synthesized by solid-state reaction method. The X-ray diffraction patterns and Raman spectra of bulk nanocomposite as a function of sintering temperature (700 °C–1300 °C) indicate that the structural phases of SnO2 and TiO2 depend on the sintering temperature while the ZnO retains its hexagonal wurtzite phase at all sintering temperatures and SnO2 started to transform into SnO at 900 °C and completely converted into SnO at 1100 °C, whereas the titanium dioxide (TiO2) exhibits its most stable phase such as rutile at low sintering temperature (≤900°C) and it transforms partially into brookite phase at high sintering temperature (≥ 900 °C). The optical band gap of nanocomposite ZnO–SnO2–TiO2 sintered at 700 °C, 900 °C, 1100 °C and 1300 °C for 16 hours is calculated using the transformed diffuse reflectance ultra violet visible near infra red (UV–VisNIR) spectra and has been found to be 3.28, 3.29, 3.31 and 3.32 eV, respectively.  相似文献   

17.
This paper reports on the electrochemical properties and chemical stability of a recently developed Ca2+ and Sm3+-doped oxide ion conducting electrolyte, Ce0.85Ca0.05Sm0.1O1.9 (CCS), employed in an intermediate temperature solid oxide fuel cell (IT-SOFC) using conventional Sm0.5Sr0.5CoO3 (SSC) and La0.8Sr0.2MnO3 (LSM) cathodes in air at elevated temperatures. The materials were prepared by conventional solid-state reactions using their corresponding metal oxides and salts in the temperature range of 1,200–1,450 °C in air. Powder X-ray diffraction (PXRD) and impedance spectroscopy were employed for phase formation, chemical compatibility, and electrochemical characterization. PXRD studies on 1:1 weight ratio of heat-treated (1,000 °C for 3 days) mixtures of SSC or LSM and CCS revealed the presence of fluorite-type and perovskite-like phases. The area-specific resistance (ASR) value in air was lower for SSC cathodes (4.3–0.15 Ω cm2) compared to those of LSM (407–11 Ω cm2) over the investigated temperature range of 600–800 °C. As expected, a significant increase in ASR was observed in Ar as compared to air.  相似文献   

18.
Systematic studies of synthesizing behaviors of sol-gel YBa2Cu3O7−x samples in flowing oxygen atmosphere and their superconductivity have been performed. A set of high temperature ρ-T curves has been obtained for the whole synthesizing process. After four rounds of synthesizing, the resistivity of the sample was around ρ=1.00×10−3Ω · cm at room temperature. The ρ-T curve of the fourth round shows that the orthorhombic to tetragonal phase transformation of the sample occurs around 600 °C, which is lower than that of the YBa2Cu3O7−x sample prepared by conventional solid-state reaction method. Other measurements, such as X-ray diffraction, SEM measurement and low temperature R-T and M-T measurement, were also performed. And the R-T and M-T measurement results suggest that during the synthesizing process, there exist some state at which the sample has better superconductivity than the other states. Moreover, we found screw dislocations presenting on the sample broken surface from the SEM images. This will change the concept that the screw dislocations can only grow on the surface of the YBCO thin films and single crystals.   相似文献   

19.
LiNbO 3 has been found attractive for lateral field excitation (LFE) applications due to its high piezoelectric coupling. In this paper, bulk acoustic wave propagation properties for LiNbO 3 single crystal excited by a lateral electric field have been investigated using the extended Christoffel-Bechmann method. It is found that the LFE piezoelectric coupling factor for c mode reaches its maximum value of 95.46% when ψ = 0 for both (yxl)-58 and (yxwl)±60 /58 LiNbO 3 . The acoustic wave phase velocity of c mode TSM (thickness shear mode) changes from 3456 m/s to 3983 m/s as a function of ψ. Here ψ represents the angle between the lateral electric field and the crystallographic X-axis in the substrate major surface. A 5 MHz LFE device of (yxl)-58 LiNbO 3 with ψ = 0 was designed and tested in air. A major resonance peak was observed with the motional resistance as low as 17 and the Q-factor value up to 10353. The test result is well in agreement with the theoretical analysis, and suggests that the LFE LiNbO 3 device can be a good platform for high performance resonator or sensor applications.  相似文献   

20.
EPR spectra of KNbO3:Fe single crystals are obtained in the - 10–110°C temperature range. The angular dependence of resonant lines is well reproduced by spin Hamiltonian parameters relevant to a Fe3+ impurity ion substituted to Nb ion in KNbO3 crystal. The temperature behaviour of resonant lines is explained by a quadratic dependence of axial parameter D vs polarization Ps of the form D = βP2s in the orthorhombic phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号