首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Molecular reorientation and low temperature relaxation effects of NH+ 4 ion and the effect of CH3 substitution (in place of H) are investigated by proton spin lattice relaxation time (T1) measurements at 10 MHz in NH4SnCl3 and N(CH3)4SnCl3 in the temperature range 4.2 K upto the melting points of the compounds (? 440 K). Phase transitions around 360 K in NH4SnCl3 and around 361 and 116K in N(CH3)4SnCl3 have been observed. In NH4SnCl3, the high temperature minimum at 330.5 K is attributed to the translational diffusion of the NH+ 4 ions, while the other T1, minima at 103.5, 60 and 50 K are ascribed to the reorientations of the NH+ 4 ion about the C2 and C3 axes. The low temperature minimum at 13.5 K is attributed to rotational tunnelling of the NH+ 4 ions. In N(CH3)4SnCl3, in addition to the high temperature minima at 212.2 and 182.6 K due to N(CH3)4 tumbling and CH3 reorientation, a temperature independent T1 behaviour between 83 and 31 K is observed, below which T1 decreases and tends to go through a minimum around 5 K. This low temperature minimum is attributed to rotational tunnelling of the CH3 groups. The motional parameters and tunnel frequencies are estimated.  相似文献   

2.
The proton N.M.R. lineshape of polycrystalline Langbeinite, (NH4)2Cd2(SO4)3, has been studied in the temperature range 300 K to 1·8 K. The resonance line is motionally narrowed over the entire temperature range, and the low temperature proton line shows clear evidence for tunnelling motion of the ammonium ion between spin-symmetry states. From a computer simulation of the lineshape, we obtain an estimate for the tunnelling splitting parameter, J, of the torsional ground state of the ammonium ion, as 375 ± 125 gauss. For an undistorted tetrahedral crystal field this corresponds to a tunnelling splitting Δ = 4J = 6·3 ± 2·1 MHz.

Pulsed proton N.M.R. studies have also been carried out on the above compound at 30·8 MHz and 48·2 MHz and the spin-lattice relaxation time (T 1) has been measured by the π - t - π/2 pulse sequence as a function of temperature down to 77 K. At 30·8 MHz, a T 1 minimum of 13 ms occurs at 105·8 K, and is ascribed to random reorientations of the NH4 + ion. An activational energy barrier of 0·74 ± 0·1 kcal/mole and an associated pre-exponential factor of 8·0 × 10-13 s are calculated for the above motional process, and the value of the activation energy is correlated with the tunnelling splitting of the torsional ground state.

An anomaly in T 1 has been observed at the ferroelectric Curie point (95 K), indicating the order-disorder nature of the transition. This is the first experimental evidence relating to the nature of the transition in Langbeinite.  相似文献   

3.
The NQR spectra of Cu(2) in the superconductor TmBa2Cu4O8 are studied at temperatures from 300 to 4.2 K. In analyzing the spectra it is assumed that the NQR line of each isotope contains two Gaussian components — narrow (n) and broad (b). It is discovered that the NQR frequencies have a minimum at the temperature T*=150 K. The frequencies of the components of the spectrum are close at temperatures from T* to 4.2 K and differ substantially at temperatures T>T*. Both components are broadened as the temperature decreases, but this broadening occurs especially rapidly at temperatures T<T*. The relative intensity of the narrow component I n/(I n+I b) equals 1/6 for T=225−160 K, increases abruptly at T=T*, and remains constant (1/3) at temperatures T from 125 to 4.2 K. Analysis of the experimental data showed that the anomalous temperature dependences of the Cu(2) NQR spectra could be due to electronic phase separation (stratification) in the CuO2 planes at temperatures TT*. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 3, 214–219 (10 February 1996)  相似文献   

4.
Wide-line proton NMR studies on polycrystalline tetramethylammonium tetrachlorozincate have been carried out at high hydrostatic pressures up to 15 kbar in the temperature range 77-300 K and at ambient pressure down to 4.2 K. A second-moment transition is observed to occur starting around 161 K, the temperature for the V-VI phase transition. This transition temperature is seen to have a negative pressure coefficient up to 2 kbar, beyond which it changes sign. At 77 K the second moment decreases to 4 kbar and then increases again as a function of pressure. The results are explained in terms of the dynamics of the N(CH3)4 groups.  相似文献   

5.
Oxyfluoride (NH4)2WO2F4 has been studied by the inelastic neutron scattering method over a wide temperature range 10–300 K at two initial neutron energies of 15 and 60 meV. The role of tetrahedral ammonium groups in the mechanism of sequential phase transitions at T 1 = 201 K and T 2 = 160 K has been discussed.  相似文献   

6.
Films of (C4H9NH3)2MCl4 (M=Cu and Sn) organic-inorganic hybrid perovskites have been deposited in-situ by a single-source thermal ablation technique on glassy, crystalline and polymeric substrates. Independently of the substrate, the films were well crystallized, c-axis oriented and with a narrow rocking curve of the (0010) reflection (full width at half maximum <1°). The (0 0 ℓ) reflections were consistent with those of the bulk orthorhombic phases and the “c” lattice parameters were 30.85±0.05 and 32.35±0.05 Å, for the Cu- and the Sn-compound, respectively. (C4H9NH3)2CuCl4 films had an optical absorption peak at 375 nm at room temperature. From the magnetic point of view they act as layered nanocomposites with a dominant ferromagnetic component localized in planes (2D magnetism). Tc was 7.3±0.1 K and a moderate easy-plane anisotropy was observed. The photoluminescence spectra of typical (C4H9NH3)2SnCl4 films at 12 K had a broad yellow band, which did not correspond to any significant peak in the absorption spectrum. The films were semiconducting down to 250 K or, in the case of the best samples, down to 200 K and became insulating at lower temperature. The resistivity of the best films was (5±1) 104 Ω cm at 300 K, and the energy gap was 1.11 eV. PACS 81.07.Pr; 81.15.Kk; 81.16.Dn  相似文献   

7.
The thermal expansion along the principal crystallographic axes of the (NH4)2WO2F4 and (NH4)2MoO2F4 oxyfluorides has been studied. The anomalous behavior of α i (T) due to the phase transitions has been revealed at T 1 = 271.4 K and T 2 ≈ 180 K for the molybdate and at T 1 = 201.5 K and T 2 ≈ 161 K for the tungstate. The quantities dT/dp and dT/dσ i , which characterize the dependence of the phase transition temperatures on the hydrostatic and uniaxial pressures, have been determined from analyzing the results of studies of the thermal expansion and heat capacity with the use of the Pippard relations. The p-T and α i -T phase diagrams reflect different characters of the influence of the pressure on the stability of the initial and distorted phases of the oxyfluorides. The magnitudes of the extensive and intensive barocaloric effects determined in the vicinity of the structural phase transitions are as follows: ΔS BCE varies from approximately −10 to −17 J/mol K and ΔT AD ≈ 8−17 K for the molybdate and ΔS BCE varies from approximately −10 to −17 J/mol K and ΔT AD ≈ 8−13 K for the tungstate.  相似文献   

8.
Structural phase transitions in the lipid-like bilayer material [(CH2)12(NH3)2]CuCl4 have been observed using differential thermal scanning. The compound shows an irreversible thermochromic transition at ? 465 K and three reversible transitions at T 1 = 433 ± 4 K and T 2 = 411 ± 2 K and T 3 = 358 K. The transition at 350 K is ascribed to chain melting. The other two correspond to crystalline phase transformation.

Phase (IV) T3 = 358 ± 2K Phase (III) T2 = 411 ± 2K Phase (II) T1 = 433 ± 4K Phase (I)

Dielectric permittivity is studied as a function of temperature in the range 300-440 K and frequency, range (60 Hz-100 kHz). It confirms the observed transitions. The dielectric permittivity reflects rotational and conformational transitions for the compound. The variation of the real part of the conductivity with temperature is thermally activated in the temperature range above 350 K, with frequency-dependent activation energy, the values of activation energy lie in the range of ionic hopping. The dependence of the conductivity on frequency follows the universal power law σ = σ0 + A(T) ω s ( T ) with 0<s<1. Comparison of this material with other members of the series is discussed  相似文献   

9.
Proton spin lattice relaxation time (T1), measured as a function of temperature in the range 375–77 K, shows slope changes at 333, 221 and 111 K, in addition to a first order phase transition at 150K. The observed T1 behaviour and second moment (M2) variation with temperature are explained on the basis of the different possible motions of CH3 and NH3 groups.  相似文献   

10.
The paper presents the EPR evidence for the occurrence of phase transitions in (NH4)4ThF8 and (NH4)3ThF7. In both cases the Cu2+ probe occupies a NH4+ site and predominantly experiences a dynamic coordination, either due to dynamic Jahn-Teller effect, or due to fluxional behaviour of surrounding (ThF8)4- units in (NH4)4ThF8. It is proposed that the structural phase transition in this compound at 214 K is associated with the transition of the dynamic coordination of Cu2- into a static one, probably due to freezing of motion of (ThF8)4- units below this temperature. In (NH4)3ThF7 the dynamic features of the Cu2+ EPR spectrum are absent and characteristics of a local orthorhombic symmetry are seen down to 77 K. However, in the high temperature range a change from orthorhombic to axial symmetry is observed at 524 K, possibly due to a phase transition.  相似文献   

11.
The electrical properties namely ac conductivity σ(ω,?T) and the complex dielectric permittivity (ε*) are measured at selected frequencies (5–100?kHz) as function of temperature (95?K?T?4IO3. The ferroelectric hysteresis loops and the X-ray diffraction pattern are also measured. The analysis of the data indicates that the compound undergoes a structural phase transition at ~103?K and the behavior of σ(ω,?T) obeys the power law. The trend of the temperature dependence of the angular frequency exponent s (0?s?4IO3; (2) the data indicate that the compound undergoes a structural phase transition at 103?K; (3) the originality of this transition has been confirmed by X-ray diffraction; (4) no evidence for the existence of a ferroelectric transition at 103?K as mentioned earlier; and (5) the quantum mechanical tunneling is proposed as the main mechanism of the electric conduction.  相似文献   

12.
DSC and complex impedance studies of the protonic conductor (NH4)4H2(SeO4)3, which undergoes a superionic phase transition of first order at Ts = 378 K show that the activation energy of ionic conductivity d(lg σ)/dt and the ordering enthalpy ΔCp of the crystal are proportional: d(lg σ)/dT = XΔCp/RTs + const, as found for MAg4I5 crystals undergoing a second-order superionic phase transition. Thus the short-range order environment of the species involved in fast-ion transport plays the main role in the superionic phase transition. This is also supported by the value of the entropy change at Ts, ΔS = 43 J/mole·K. A new metastable phase was found to be induced on heating the (NH4)4H2(SeO4)3 crystal above Ts.  相似文献   

13.
The course of the order parameter around the β, γ phase transition (235 K) in the NH4Br has been closely observed by means of linear optical birefringence. The experimental data were fitted in the critical region T > 0.9T0 by the Landau theory and a simple power law. Both relations reveal a first order transition, with the jump height in the birefringence amounting to Δn(T0)/?Δn(120 K) = 0.145.  相似文献   

14.
The differential magnetization of Ni(ClO4)26NH3 and Ni(BF4)26NH3 was measured as a function of temperature (20 to 0.3 K) and magnetic field (up to 40kOe). An antiferromagnetic transition was found at TN = 0.45 K for the Ni(ClO4)26NH3 and TN = 0.43 K for the Ni(BF4)26NH3, and a portion of the magnetic phase diagram was determined. The interpretation of the data in terms of a uniaxial model yielded (D/k) ~ 0.2 K for both salts.  相似文献   

15.
We report on the ac dielectric permittivity (ε) and the electric conductivity (σω), as function of the temperature 300?K?T4IO3. The main feature of our measured parameters is that, the compound undergoes a ferroelectric phase transition of an improper character, at (368?±?1)K from a high temperature paraelectric phase I (Pm21 b) to a low temperature ferroelectric phase II (Pc21n). The electric conduction seems to be protonic. The frequency dependent conductivity has a linear response following the universal power law (σ( ω )?=?A(T s (T)). The temperature dependence of the frequency exponent s suggests the existence of two types of conduction mechanisms.  相似文献   

16.
Four 81Br NQR lines in 4-NH2C5H4NHBiBr4·H2O were observed in the temperature range between 77 and ca. 380 K; with increasing temperatures the respective sets of higher and lower two resonance lines coalesced into single lines discontinuously at 274 K, showing the occurrence of a first-order type phase transition of this crystal. The transition was confirmed with heat anomaly on a DTA curve. Each higher and lower line of high-temperature phase is assignable to the terminal Br atoms and the bridging ones of one-dimensional poly anions (BiBr4 ) n in the crystal structure (C2/c), which was investigated by a X-ray structure analysis at room temperature. The 1/T 1 temperature dependence of 81Br NQR follows the usual T 2 law in the temperature range between 77 and ca. 140 K, being explained by fluctuation of the EFG at Br nucleus due to lattice vibrations. The T 1 vs. 1/T curve in the temperature range between about 160 and 190 K was describable by the exponential curves, allowing us the estimation of activation energies. These exponential behaviors of T 1 of 81Br NQR are attributable to the fluctuations caused by the thermal motion of 4-NH2C5H4H+ ions. Echo signals of the 81Br NQR could not be detected above 190 K owing to poor S/N with very short T 2.  相似文献   

17.
Spectra of the real and imaginary parts of the pseudo‐dielectric permittivity, 〈?1〉(E) and 〈?2〉(E), of ferroelectric ammonium sulfate crystals, (NH4)2SO4, have been measured in the range of electronic excitations 4.0 to 9.5 eV by ellipsometry using synchrotron radiation. Temperature dependences of the corresponding susceptibilities, 〈χ1〉(T) and 〈χ2〉(T), obtained for the photon energy E = 8.5 eV, related to excitations of oxygen p‐electrons, reveal sharp peak‐like temperature changes near the Curie point TC = 223 K. The large temperature‐dependent increase of the imaginary part of the susceptibility χ2(T), together with a simultaneous decrease of the real part of the susceptibility χ1(T), take place at the phase transition. These anomalies have been ascribed mainly to the SO4 group of the crystal structure.  相似文献   

18.
Dielectric properties of the new [NH(CH3)3]2ZnCl4 and [NH(CH3)3]2CdCl4 crystals from the [(CH3) n NH4-n ]2MeCl4 group have been investigated in a wide temperature range (4.2–320 K). A series of phase transitions has been discovered at T3 = 325 K,T4 = 251 K,T5 = 193 K, for [NH(CH3)3]2CdCl4 and at T3 = 309 K, T4 = 282 K, T5 = 269 K for [NH(CH3)3]2ZnCl4. A ferroelectric phase has been discovered in the temperature interval T4—T5 from the temperature and frequency dependence of the dielectric permittivity ε(T, v). According to optical investigations the existence of ferroelastic phases in the temperature interval T1 = 349 K–T2 = 391 K and below T5 for [NH(CH3)3]2CdCl4 and both above T3 and below T5 for [NH(CH3)3]2ZnCl4 has been ascertained.  相似文献   

19.
The proton spin-lattice relaxation time in the laboratory frame, T1, and rotating frame T for polycrystalline cubic (NH4)2SiF6, (NH4)2SnBr6 and (NH4)2SnCl6 have been measured over a temperature range 60–500°K. Reorientation of the ammonium ion is generally the dominant relaxation mechanism and T1 minima are observed in all samples. Activation energies are low in each case, being 2·2 Kcal/mole for the fluosilicate, 1·44 and 1·24 Kcal/mole for the bromo- and chloro-stannate respectively. For the bromostannate a λ-point occurs at 145°K above which the activation energy apparently decreases to 0·26 Kcal/mole. Anion reorientation is detected in the fluosilicate at high temperatures, the correlation time for this motion being obtained from T measurements. There is also some evidence to suggest anion reorientation is becoming important in the stannihalides at high temperatures. The proton T in the stannibromide is largely determined by the rapid quadrupolar controlled relaxation of the bromine nuclei. Values for the bromine T1 are deduced and the quadrupolar relaxation mechanism discussed.  相似文献   

20.
This paper investigates the current-voltage (I-V) characteristics of Al/Ti/4H-SiC Schottky barrier diodes (SBDs) in the temperature range of 77 K-500 K,which shows that Al/Ti/4H-SiC SBDs have good rectifying behaviour.An abnormal behaviour,in which the zero bias barrier height decreases while the ideality factor increases with decreasing temperature (T),has been successfully interpreted by using thermionic emission theory with Gaussian distribution of the barrier heights due to the inhomogeneous barrier height at the Al/Ti/4H-SiC interface.The effective Richardson constant A =154 A/cm 2 · K 2 is determined by means of a modified Richardson plot ln(I 0 /T 2)-(qσ) 2 /2(kT) 2 versus q/kT,which is very close to the theoretical value 146 A/cm 2 · K 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号