首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Current Applied Physics》2010,10(4):1005-1008
Silver (Ag) nanoparticles (∼3 nm) were synthesized using silver nitrate as the starting precursor, ethylene glycol as solvent and poly (N-vinylpyrrolidone) (PVP) introduced as a capping agent. These nano-Ag particles were reinforced in nylon matrix by electrospinning of nylon-6/Ag solution in 2,2,2-trifluoroethanol and composite nanofibrous membranes were synthesized. The effects of solution concentration and relative humidity (RH) on the resultant fibrous membranes were studied. Scanning electron microscopy and Transmission electron microscopy was used to study the size and morphology of the fibers. It was observed that concentration and RH could be used to modulate the fiber diameter. Tensile test was used to evaluate the mechanical property of these electrospun composite membranes. The composite membranes showed higher strength (approx. 2–3 times increase in strength) compare to as synthesized nylon fibers.  相似文献   

2.
We have synthesized, characterized and studied the third-order nonlinear optical properties of two different nanostructures of polydiacetylene (PDA), PDA nanocrystals and PDA nanovesicles, along with silver nanoparticles-decorated PDA nanovesicles. The second molecular hyperpolarizability γ(?ω; ω, ?ω, ω) of the samples has been investigated by antiresonant ring interferometric nonlinear spectroscopic (ARINS) technique using femtosecond mode-locked Ti:sapphire laser in the spectral range of 720–820 nm. The observed spectral dispersion of γ has been explained in the framework of three-essential states model and a correlation between the electronic structure and optical nonlinearity of the samples has been established. The energy of two-photon state, transition dipole moments and linewidth of the transitions have been estimated. We have observed that the nonlinear optical properties of PDA nanocrystals and nanovesicles are different because of the influence of chain coupling effects facilitated by the chain packing geometry of the monomers. On the other hand, our investigation reveals that the spectral dispersion characteristic of γ for silver nanoparticles-coated PDA nanovesicles is qualitatively similar to that observed for the uncoated PDA nanovesicles but bears no resemblance to that observed in silver nanoparticles. The presence of silver nanoparticles increases the γ values of the coated nanovesicles slightly as compared to that of the uncoated nanovesicles, suggesting a definite but weak coupling between the free electrons of the metal nanoparticles and π electrons of the polymer in the composite system. Our comparative studies show that the arrangement of polymer chains in polydiacetylene nanocrystals is more favourable for higher nonlinearity.  相似文献   

3.
Cobalt doped/un-doped manganese oxides materials were synthesized at various doping rates by soft chemical reactions, oxidation-reduction method, which allows generating a metal-mixed oxide. The synthesized materials were characterized using several techniques including chemical analysis, X-rays diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The chemical analysis confirmed the presence of cobalt in the samples. XRD patterns reveal mainly a spinel-like structure and SEM micrographs exhibited morphology with fine aggregate of particles. TGA profiles showed weight loss due to loss of water in a first step, followed by a loss of oxygen from the lattice associated with partial reduction of Mn4+ to Mn3+. VSM was used to measure the magnetization as a function of the applied magnetic field at temperatures T=50 and 300 K. Different magnetic behaviors were observed when cobalt percentage changed in the samples. These behaviors are considered to be related to the size of the particles and composition of the materials. Higher coercive field and lesser magnetization were observed for the sample with higher cobalt content.  相似文献   

4.
Journal of Nanoparticle Research - A micellar method has been used to prepare silver-coated cobalt (Co@Ag) nanoparticles. The synthesized particles have been deeply characterized by several...  相似文献   

5.
Magnetic and structural properties of Heusler Pd0.5Mn0.5- x Sn x with x = 0.05, 0.10, 0.17, 0.20 and 0.25, have been studied by magnetisation and X-ray diffraction measurements at room and low temperatures. The crystal structure at room temperature is L21 cubic phase for x = 0.17, 0.20, 0.25 and B2 cubic phase for x = 0.10. Martensite structure 10M, was observed at room temperature for x = 0.05. X-ray measurements at low temperatures revealed a structural transformation from B2 to 14M for the x = 0.10 case. The lattice parameter of the L21 phase decreases linearly with the concentration, x. A ferromagnetic behaviour has been detected for L21 compounds, but the ferromagnetic exchange characteristic of each composition is of different strength. This gives rise to different Curie temperatures.  相似文献   

6.
The polycrystalline sample of Li2Pb2Y2W2Ti4Ta4O30 was prepared by a high-temperature solid-state reaction technique. Room temperature X-ray structural analysis confirms the formation of a single-phase compound. The surface morphology of the sintered pellet sample recorded by SEM (scanning electron microscope) exhibits a uniform grain distribution with few voids. Detailed studies of dielectric constant, tangent loss and remanent and spontaneous polarization with temperature and frequency exhibit the existence of ferroelectricity in the material. The temperature and frequency dependence of impedance parameters (impedance, modulus, etc) of the material exhibits a strong correlation between these electrical parameters with its micro-structure (i.e., bulk, grain boundary, etc). The nature of variation of pyroelectric-coefficient and current with temperature suggests that material has good pyroelectric properties useful for fabrication of pyroelectric detector.  相似文献   

7.
Luminescence and sintering characteristics of α-Al2O3-tetragonal zirconia [t-ZrO2(Y2O3)] mixtures have been investigated. The pseudoboehmite is one of the main precursors of the α-alumina. In this investigation pseudoboehmite has been synthesized through a desulphatation of the commercial Al2(SO4)3 using an ammonia solution. Tetragonal zirconia powders were added in adequate proportion for each composition. The mixture constituted by Al2O3 (pseudoboehmite) and t-ZrO2 has been annealed at different temperatures to obtain the crystalline phases. XRD and SEM techniques measurements have been used to structural characterization. Photoluminescence (PL) emission spectra of Al2O3–ZrO2 composites were performed at room temperature. Thermoluminescent emission spectrum of the samples was obtained and analyzed.  相似文献   

8.
Sugar-based amphiphiles, consisting of two sugar head groups and an alkylene chain within the molecules, are synthesized and their aggregation and mesomorphic properties are evaluated. The hydrophilic sugar head groups, constituted with β-D-glucopyranoside units, and the lyophilic alkylene units, are coupled to a glycerol backbone to afford the ‘double-headed’ sugar amphiphiles. Aggregation studies in aqueous solutions provided their critical micellar concentrations and the aggregation numbers. Mesophase characterizations by polarizing optical microscopy and differential scanning calorimetry (DSC) revealed the phase-transition behaviour of these new ‘double-headed’ glycolipids.  相似文献   

9.
Silver–nickel alloy nanoparticles with an average size of 30–40 nm were synthesized by chemically reducing the mixture of silver and nickel salts using sodium borohydride. The structure and the magnetic properties of the alloy samples with different compositions were investigated. The phase stability of the material was analysed after annealing the sample in vacuum at various temperatures. The material exhibits single fcc phase which is stable up to 400 °C and Ni precipitation sets in when the sample is annealed to 500 °C. The thermal analysis using DSC was carried out to confirm the same. The alloy compositions are found to be in close correlation with the metal salt ratios in the precursors. The synthesized samples exhibit weak paramagnetic to ferromagnetic behaviour. The magnetic measurements reveal that by adjusting the precursor ratio, the Ni content in the material can be altered and hence its magnetic properties tailored to suit specific requirements. The formation of Ag–Ni alloy is confirmed by the observed Curie temperature from the magneto thermogram. Annealing the sample helps to produce significant enhancement in the magnetization of the material.  相似文献   

10.
Co1−xZnxFe2O4 (with x varying from 0 to 0.7) nanoparticles to be used for ferrofluid preparation were prepared by chemical co-precipitation method. The fine particles were suitably dispersed in transformer oil using oleic acid as the surfactant. The magnetization (Ms) and the size of the particles were measured at room temperature. The magnetization (Ms) was found to decrease with the increase in zinc substitution. The magnetic particle size (Dm) of the fluid was found to vary from 11.19 to 4.25 nm decreasing with the increase in zinc substitution.  相似文献   

11.
Pt–Bi films were synthesized on glass and thermally oxidized silicon substrates by e-beam evaporation and annealing. The structures were characterized using X-ray diffraction (XRD) and transmission electron microscopy/selected area electron diffraction (TEM/SAED) techniques. Single-phase PtBi was obtained at an annealing temperature of 300°C, whereas a higher annealing temperature of 400°C was required to obtain the highly textured γ-PtBi2 phase. TEM/SAED analysis showed that the films annealed at 400°C contain a dominant γ-PtBi2 phase with a small amount of β-PtBi2 and α-PtBi2 phases. Both the PtBi and γ-PtBi2 phases are highly textured in these two kinds of film: the c-axis of the hexagonal PtBi phase is mostly in the film plane, whereas the c-axis of the trigonal γ-PtBi2 phase is perpendicular to the film plane. The electrical resistivity of the film with the γ-PtBi2 phase was smaller by one order of magnitude than that of the film with the PtBi phase.  相似文献   

12.
13.
Nitrogen-doped and nitrogen–phosphorus-doped multi-walled carbon nanotubes (N-MWCNTs and N–P-MWCNTs, respectively) were fabricated by chemical vapor deposition and characterized using scanning electron microscopy and transmission electron microscopy in combination with energy dispersive X-ray spectroscopy and Raman spectroscopy. The electrochemical response of N-MWCNTs and N–P-MWCNTs towards ferrocyanide/ferricyanide was initially studied. The findings exhibit weakening of electrochemical response and sensitivity of nanotubes with phosphorus doping, and thus, within the composite films tested, those consist exclusively of N-MWCNTs exhibit the greatest electrocatalytic activity. N–P-MWCNT film was further applied for individual electrochemical analysis of ascorbic acid (AA), uric acid (UA), and dopamine (DA), and lower limits of detections of 11.6, 7.8, and 1.9 μM were estimated, respectively. The findings demonstrate that AA does not interfere with UA, but considerable interference of AA in analysis of DA was observed. Thus, the simultaneous analysis of AA, UA, and DA on N–P-MWCNTs appears to be restricted.  相似文献   

14.
A comprehensive understanding of the organic semiconductor material pentacene is meaningful for organic fieldeffect transistors (OFETs). Thin films of pentacene are the most mobile molecular films known to date. This paper reported that the pentacene sample was successfully synthesized. The purity of pentacene is up to 95%. The results of a joint experimental investigation based on a combination of infrared absorption spectra, mass spectra (MS), element analysis, x-ray diffraction (XRD) and atom force microscopy (AFM). The authors fabricated OFET with the synthesized pentacene. Its field effect mobility is about 1.23 cm^2/(V·s) and on-off ratio is above 10^6.  相似文献   

15.
Alginic acid–Fe3O4 nanocomposite is synthesized by the precipitation of Fe3O4 in the presence of alginic acid (AA). Structural, surface, morphological, thermal and electrical transport properties of the nanocomposite were performed by XRD, FT-IR, TEM-SEM, TGA and conductivity measurements respectively. FT-IR analysis revealed that Fe3O4 NPs are strongly capped with AA and TGA analysis showed that nanocomposite have 80% of Fe3O4 content. TEM analysis of Fe3O4 NPs show an average particle size of 9.5 nm, and upon nanocomposite formation with AA these particles are observed to form aggregates of ~150 nm. The frequency-dependency of the AC conductivity show electrode polarization effect. Analysis of electrical modulus and dielectric permittivity functions suggest that ionic and polymer segmental motions are strongly coupled. DC electrical conductivity is strongly temperature dependent, and is classified into three regions over a limited temperature range of up to 100 °C.  相似文献   

16.
The novel CdS–ZnS core–shell nanoparticles are synthesized using simple one-step aqueous chemical approach. 3-mercaptopropionic acid (MPA) was used as the capping molecule. The structural and optical properties of the prepared samples are characterized by X-ray diffraction (XRD), UV–vis absorption spectroscopy, photoluminescence (PL) spectroscopy, energy-dispersive X-ray (EDX) and transition electron microscopy (TEM). The studies show that pH contributed noticeably to the growth and optical properties of nanoparticles. The TEM results indicate that the prepared particles have core–shell structure.  相似文献   

17.
α-Cobalt hydroxide was synthesized by a facile hydrothermal process from Co(Ac)2 and NH3·H2O in the presence of 1,3-propanediol. The large-scale-prepared cobalt hydroxide has a uniform nanobelt morphology with a considerably high aspect-ratio more than 20 which may be advantageous for exploration of their physicochemical properties. This synthetic method is convenient, economical, and controllable. The samples were characterized by powder X-ray diffraction, energy dispersive spectrum, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, CHN element analysis, thermogravimetric and differential-thermogravimetric analysis, which revealed the compound is lamellar structural cobalt organic–inorganic hybrid with the chemical formula of Co(OH)1.49(NH3)0.01(CO3 2−)0.22(Ac)0.07(H2O)0.11 and single-crystalline.  相似文献   

18.
Yasser B. Saddeek 《哲学杂志》2013,93(26):2305-2320
Lead vanadate glasses of the system xMoO3–50V2O5–(50-x)PbO (0 ≤ x ≤ 25 mol. %) were synthesized and studied by FTIR and ultrasonic spectroscopy and differential scanning calorimetry to investigate the role of MoO3 content on their atomic structure. The elastic properties and Debye temperatures of the glasses were investigated using sound velocity measurements at 4 MHz. The activation energy for the glass transition was derived from the dependence of the glass-transition temperature (Tg ) on the heating rate. Similarly, the activation energy of the crystallization process was also determined. According to the IR analysis, the vibrations of the vanadate structural units are shifted towards higher wavenumbers on the formation of bridging oxygens. The change of density and molar volume with MoO3 content reveals that the molybdinate units are less dense than the lead oxide units. The observed compositional dependence of the elastic moduli is interpreted in terms of the effect of MoO3 on the coordination number of the vanadate units. A good correlation was observed between the experimentally determined elastic moduli and those computed according to the Makishima–Mackenzie model. It is assumed that MoO3 plays the role of a glass former by increasing the activation energy for the glass transition and the activation energy for crystallization and by increasing both the thermal stability and the glass formation range of the vanadate glasses.  相似文献   

19.
The electronic structure, magnetic and elastic properties of Ir2MnSi full-Heusler compound is studied within the framework of Density Functional Theory (DFT). The ferromagnetic (FM) and non-magnetic (NM) states are compared in Cu2MnAl and Hg2CuTi prototype structures. The ferromagnetic state in Cu2MnAl structure has been found energetically more stable than non-magnetic state in these two types of structures. Due to this stability, all calculations are carried out for FM-state. The spin-polarized calculations show that the spin-up electrons of Ir2MnSi compound have metallic nature, but the spin-down electrons have semiconducting behavior with 0.55 eV energy gap around the Fermi level. The calculated Cauchy pressure and Poisson's ratio indicated that Ir2MnSi compound is a ductile material. Ir2MnSi compound is a half-metallic ferromagnet (HMF) and it has 5µB magnetic moment. This study will theoretically lead to experimental works in the spintronic field and its applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号