首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1-Decylammonium hydrochloride was synthesized by the method of liquid phase synthesis. Chemical analysis, elemental analysis, and X-ray single crystal diffraction techniques were applied to characterize its composition and structure. Low-temperature heat capacities of the compounds were measured with a precision automated adiabatic calorimeter over the temperature range from 78 to 380?K. Three solid–solid phase transitions have been observed at the peak temperatures of 307.52?±?0.13, 325.02?±?0.19, and 327.26?±?0.07?K. The molar enthalpies and entropies of three phase transitions were determined based on the analysis of heat capacity curves. Experimental molar heat capacities were fitted to two polynomial equations of the heat capacities as a function of temperature by least square method. Smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15?K were calculated and tabulated at intervals of 5?K based on the fitted polynomials.  相似文献   

2.
This paper reports that low-temperature heat capacities of N-methylnorephedrine C11H17NO(s) have been measured by a precision automated adiabatic calorimeter over the temperature range from T=78K to T=400K. A solid to liquid phase transition of the compound was found in the heat capacity curve in the temperature range of T=342-364 K. The peak temperature, molar enthalpy and entropy of fusion of the substance were determined. The experimental values of the molar heat capacities in the temperature regions of T=78-342 K and T=364-400 K were fitted to two poly- nomial equations of heat capacities with the reduced temperatures by least squares method. The smoothed molar heat capacities and thermodynamic functions of N-methylnorephedrine C11H17NO(s) relative to the standard refer- ence temperature 298.15 K were calculated based on the fitted polynomials and tabulated with an interval of 5 K. The constant-volume energy of combustion of the compound at T=298.15 K was measured by means of an isoperibol precision oxygen-bomb combustion calorimeter. The standard molar enthalpy of combustion of the sample was calculated. The standard molar enthalpy of formation of the compound was determined from the combustion enthalpy and other auxiliary thermodynamic data through a Hess thermochemical cycle.  相似文献   

3.
A novel complex bis(1-dodecylammonium) tetrachlorochromate (C12H25NH3)2CdCl4(s) (abbreviated as C12Cd(s)) was synthesized by liquid phase reaction. Crystal structure and composition of the complex were determined by X-ray crystallography, chemical analysis, and elemental analysis. It is triclinic, the space group is P?1 and Z = 2. Lattice potential energy (LPE) of the complex was calculated to be kJ·mol?1 from crystallographic data. Low-temperature heat capacities were measured by a precise automatic adiabatic calorimeter over the temperature range from 78 to 370 K. The temperature, molar enthalpy, and entropy of the phase transition of the complex were determined to be 331.88 ± 0.02 K, 55.79 ± 0.46 kJ·mol?1, and 168.10 ± 1.38 J·K?1·mol?1, respectively. Two polynomial equations of the heat capacities as a function of temperature were fitted by least-square method. Smoothed heat capacities and thermodynamic functions of the complex were calculated.  相似文献   

4.
A new crystalline complex(C8 H17 NH3) 2 CdCl 4(s)(abbreviated as C8Cd(s)) is synthesized by liquid phase reaction.The crystal structure and composition of the complex are determined by single crystal X-ray diffraction,chemical analysis,and elementary analysis.It is triclinic,the space group is P-1 and Z = 2.The lattice potential energy of the title complex is calculated to be U POT(C 8 Cd(s))=978.83 kJ·mol-1 from crystallographic data.Low-temperature heat capacities of the complex are measured by using a precision automatic adiabatic calorimeter over a temperature range from 78 K to 384 K.The temperature,molar enthalpy,and entropy of the phase transition for the complex are determined to be 307.3±0.15 K,10.15±0.23 kJ·mol-1,and 33.05±0.78 J·K-1 ·mol-1 respectively for the endothermic peak.Two polynomial equations of the heat capacities each as a function of temperature are fitted by using the leastsquare method.Smoothed heat capacity and thermodynamic functions of the complex are calculated based on the fitted polynomials.  相似文献   

5.
卢冬飞  邸友莹  何东华 《中国物理 B》2012,21(8):80702-080702
A new crystalline complex (C8H17NH3)2CdCl4(s) (abbreviated as C8Cd(s)) is synthesized by liquid phase reaction. The crystal structure and composition of the complex are determined by single crystal X-ray diffraction, chemical analysis, and elementary analysis. It is triclinic, the space group is P-1 and Z = 2. The lattice potential energy of the title complex is calculated to be UPOT (C8Cd(s))=978.83 kJ·mol-1 from crystallographic data. Low-temperature heat capacities of the complex are measured by a precision automatic adiabatic calorimeter over a temperature range from 78 K to 384 K. The temperature, molar enthalpy, and entropy of the phase transition for the complex are determined to be 307.3± 0.15 K, 10.15± 0.23 kJ·mol-1, and 33.05± 0.78 J·K-1·mol-1 respectively for the endothermic peak. Two polynomial equations of the heat capacities each as a function of temperature are fitted by the least-square method. Smoothed heat capacity and thermodynamic functions of the complex are calculated based on the fitted polynomials.  相似文献   

6.
The thermal conductivity and the thermal diffusivity coefficients of samarium have been measured by the laser flash method in the temperature interval of 293–1773 K in solid and liquid states including the regions of phase transitions. The measurement errors of the heat transfer coefficients were ±(3–6)%. The approximation equations and the tables of reference data for the temperature dependence of properties have been obtained. The obtained results have been compared with the available literature data.  相似文献   

7.
杨伟伟  邸友莹  孔玉霞  谭志诚 《中国物理 B》2010,19(6):60517-060517
This paper reports that the low-temperature heat capacities of pyridine-2,6-dicarboxylic acid were measured by a precision automatic calorimeter over a temperature range from 78~K to 380~K. A polynomial equation of heat capacities as a function of temperature was fitted by the least-squares method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15~K were calculated and tabulated at intervals of 5~K. The constant-volume energy of combustion of the compound was determined by means of a precision rotating-bomb combustion calorimeter. The standard molar enthalpy of combustion of the compound was derived from the constant-volume energy of combustion. The standard molar enthalpy of formation of the compound was calculated from a combination of the datum of the standard molar enthalpy of combustion of the compound with other auxiliary thermodynamic quantities through a Hess thermochemical cycle.  相似文献   

8.
ABSTRACT

In this study, ultrasonic measurements were performed on a single crystal of cubic PrNi2Cd20, down to a temperature of 0.02?K, to investigate the crystalline electric field ground state and search for possible phase transitions at low temperatures. The elastic constant (C11?C12)/2, which is related to the Γ3-symmetry quadrupolar response, exhibits the Curie-type softening at temperatures below ~30?K, which indicates that the present system has a Γ3 non-Kramers doublet ground state. A leveling-off of the elastic response appears below ~0.1?K toward the lowest temperatures, which implies the presence of level splitting owing to a long-range order in a finite-volume fraction associated with Γ3-symmetry multipoles. A magnetic field–temperature phase diagram of the present compound is constructed up to 28?T for H || [110]. A clear acoustic de Haas–van Alphen signal and a possible magnetic-field-induced phase transition at H ~26?T are also detected by high-magnetic-field measurements.  相似文献   

9.
The phase diagram of Bi has been studied by resistometric techniques in the temperature range of 30 to 300°K up to pressures of 140 kbars. Using the original Bridgman phase notation, the phase transitions I–II, II–III, I–III, III–IV and V–VI were observed. Two new phases, designated VIII and IX were observed in this region. The triple points occurring between I–II–III near 29.5 kbars and 160°K, between IV–V–VIII near 55 kbars and 240°K, between V–VI–VIII near 72 kbars and 255°K and between VI–VIII–IX near 135 kbars and 250°K. Earlier measurements were adjusted to the 1970 Drickamer pressure scale and compared to the present results. A phase diagram is proposed for pressures to 140 kbars. Calculations of the volume changes and latent heats of transformation are made near the triple points I–II–III, IV–V–VIII and V–VI–VIII using the measured volume changes of Bridgman for the I–II, IV–V and V–VI transitions. The latent heat associated with the III–IV transition was calculated using the volume data of Bridgman to be less than ? 2 cal/mol.  相似文献   

10.
Molar heat capacities were measured on seven mixtures [(1 − x)thiophene + x benzene] using an adiabatic calorimeter in the 14 and 300 K temperature range. The measurements were made at x = 0.0016, 0.0030, 0.0050, 0.0061, 0.0070, 0.0183 and 0.0210, respectively. Transitions between various phases in stable and metastable sequences of thiophene crystal were found to be affected more or less by the benzene doping in this thiophene-rich region. Among others, the II2-II1 transition in the metastablephase sequence was affected drastically by the dopant. The significant effect of benzene on the transitional behavior was discussed in relation to the incommensurate structure of phase II,. Glass transitions observed in phase II1 or II2 were analyzed in terms of the Kohlrausch-Williams-Watts equation to derive kinetic parameters characterizing the relaxation processes. Non-exponential behavior of enthalpy relaxation was discussed in the light of possible distribution of relaxation times in the solid solution.  相似文献   

11.
Enthalpy of solid and liquid intermetallic compound CsBi2 in the temperature range of 430–1225 K was measured by massive isothermal drop calorimeter. Approximation equations were obtained, and isobaric heat capacity and enthalpy change on melting were determined. The tables of recommended values of caloric properties in the range from 298.15 K to 1225 K were developed. The experimental uncertainty of enthalpy and heat capacity measurements were estimated to be within 0.35 and 1.0%, respectively. The obtained results were compared with the calculations according to the laws of ideal solutions.  相似文献   

12.
Thin films of Fe-rich Fe–18 at% Ge and Fe–25 at% Ge were deposited by a pulsed laser ablation technique on single crystal NaCl substrates at room temperature to study phase evolution using transmission electron microscopy. As-deposited films contain nano-scale clusters embedded in a featureless matrix. Quadrupole mass spectrometric observations of the laser-ablated plume show the presence of charged clusters. During in situ heating of the films, the fine-scale clusters grow and profuse crystallization to a bcc FeGe solid solution occurs. For Fe–25?at% Ge thin film, crystallized bcc grains undergo two ordering transitions, viz. bcc?→?B2?→?DO3, during subsequent cooling to room temperature. However, in the case of Fe–18 at% Ge thin film, crystallization leads to formation of the disordered bcc phase. Growth morphologies of the crystals formed during heat treatment indicate faceted growth form, which has been explained by using Jackson's interface model.  相似文献   

13.
The high temperature heat capacities of LaSn3 compound and CeSn3 intermediate valence compound have been obtained from enthalpic contents measurements, using the technique of drop calorimetry in the 400–1200 K temperature range.The heat capacity behaviour of CeSn3 has been compared with that of LaSn3 and the quantitative difference between the two trends is explained in terms of residual promotional energy of the 4? electron of Ce to the conduction band.  相似文献   

14.
Temperature dependencies of the specific heat in a temperature range of 14–260?K are presented for the crystals (TEA)2MnCl4. Two anomalies typical for the first order phase transition at T 1?=?224?K and T 2?=?231?K with entropy jumps of 15?J?mol?1?K?1 and 12?J?mol?1?K?1 were observed. The temperature dependence of the lattice heat was approximated by a linear combination of Debye and Einstein functions. Basing on the results an effective wave number of phonons with an essential contribution to the lattice oscillation energy was determined. Since phase transition sequence observed in (TEA)2MnCl4 and (TEA)2CuCl4 is similar and similar is the chemical composition one can suppose that the low temperature phase transition observed in (TEA)2MnCl4 crystals is an isostructural transition.  相似文献   

15.
Abstract

The phase transitions and dehydration of chalcanthite were investigated by electrical conductivity and Raman spectroscopy at 1.0–24.0?GPa and 293–673?K in a diamond anvil cell. At ambient temperature, two secondary phase transitions were observed according to discontinuous changes in the slope of Raman shifts, full width at half maximum and electrical conductivities at ~7.3 and ~10.3?GPa. The dehydration temperatures were determined by the splitting of Raman peaks and changes in electrical conductivity as ~350 and ~500?K at respective ~3.0 and ~6.0?GPa. A positive relationship for chalcanthite between dehydration temperature and pressure is established.  相似文献   

16.
We report on some electrical properties and solid–solid phase transitions of organic–inorganic hybrid layered halide perovskite and intercalated compound (n-C12H25NH3)2ZnCl4 which is one member of the long-chain compounds of the series (n-CnH2n+1NH3)2,(n = 8–18). The complex dielectric permittivity ?*(ω,T) and the ac conductivity σ (ω,T) were measured as functions of temperature 100 K < T < 390 K and frequency 5 kHz < f < 100 kHz. Moreover, the differential scanning calorimetery and the differential thermal analysis thermograms were performed. The analysis of our data confirms the existence of a structural phase transition at T ≈ (362?±?2) K, where the compound changes its state from intercalation to non-intercalation with a drastic increase in the c-axis by about 16.4%.

The behavior of the frequency-dependent conductivity follows the Jonscher universal power law: σ (ω, T) α?s(?,T). The mechanism of electrical conduction in the low-temperature phase (phase II) can be described as quantum mechanical tunneling model.  相似文献   

17.
The ac conductivity (σac) and dielectric permittivity (?) are determined in the temperature range 300?K?T3 compound. The results indicated that the compound behaves as an improper ferroelectric and undergoes a ferroelectric phase transition from a high temperature rhombohedral phase I to a low temperature monoclinic phase II at T c?=?(486?±?1)?K. A second structural phase transition was observed around 345?K. The conductivity varies with temperature range and for T?>?428?K intrinsic conduction prevails. Different activation energies in the different temperature regions were calculated. The frequency dependence of σ(ω) was found to follow the universal dynamic response [σ(ω)∝(ω) s(T)]. The thermal behaviour of the frequency exponent s(T) suggests the hopping over the barrier model rather than the quantum mechanical tunneling model for the conduction mechanism.  相似文献   

18.
This paper reports that low-temperature heat capacities of 4-(2-aminoethyl)-phenol (C8H11NO) are measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 400 K. A polynomial equation of heat capacities as a function of the temperature was fitted by the least square method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15K were calculated and tabulated at the interval of 5K. The energy equivalent, εcalor, of the oxygen-bomb combustion calorimeter has been determined from 0.68g of NIST 39i benzoic acid to be εcalor=(14674.69±17.49)J·K^-1. The constant-volume energy of combustion of the compound at T=298.15 K was measured by a precision oxygen-bomb combustion calorimeter to be ΔcU=-(32374.25±12.93)J·g^-1. The standard molar enthalpy of combustion for the compound was calculated to be ΔcHm = -(4445.47 ± 1.77) kJ·mol^-1 according to the definition of enthalpy of combustion and other thermodynamic principles. Finally, the standard molar enthalpy of formation of the compound was derived to be ΔfHm(C8H11NO, s)=-(274.68 ±2.06) kJ·mol^-1, in accordance with Hess law.  相似文献   

19.
Temperature dependences of dielectric constant, amplitude of the third harmonic and heat capacity for the organic ferroelectric of diisopropylammonium iodide (C6H16NI) have been investigated. The measurements were carried out through heating and cooling cycles in the range of 300–400?K. It was found that upon the first heating, only one phase transition occurred without the presence of the ferroelectric phase. For samples preheated over 420?K, two phase transitions at 363 and 378?K appeared in the heating process, and the ferroelectric state was also observed between them. Upon cooling, the ferroelectric phase was detected in the range of lower 361?K and persisted up to room temperature.  相似文献   

20.
A cadmium-based organic–inorganic hybrid (n-C14H29NH3)2CdCl4 is synthesized and characterized, thermally and dielectrically. The differential scanning calorimetery (DSC) and the differential thermal analysis (DTA) thermograms were performed in a suitable range of temperature. The general feature of each thermogram indicates that the hybrid undergoes two structural phase transitions at Tmajor ≈ 351.5?K and Tminor ≈ 344.66?K in addition to an intermediate temperature which is located at ≈346.8?K. For further confirmation of the observed phase transitions, the complex dielectric permittivity ε* (ω,T)?=?ε′(ω,T) – iε″(ω,T) and ac conductivity σac(ω,T) were accurately measured in the wide range of temperature 100?K<T<400?K at some suitable range of frequencies. The data evidenced the existence of such transitions. Comparison with other hybrids reveals the absence of the odd–even effect whereas the transition temperature increases with the increase of the chain length. The mechanism of proton transfer and kink defects was outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号