首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature dependences of the integrated intensity and of the Knight shift of 199Hg NMR signals are measured for liquid and solid mercury introduced into porous carbon and silica gel. A decrease in the temperature of completion of crystallization and a small temperature hysteresis (from 4 to 9 K) between melting and crystallization are observed. The melting temperature of mercury in pores coincides with that in the bulk. The 199Hg NMR signal from crystalline mercury under the condition of restricted geometry is observed for the first time. It is established that the Knight shift for liquid and crystalline mercury in pores is smaller than in the bulk.  相似文献   

2.
Structural evolution of the amorphous alloy Ni70Mo10P20 has been studied by x-ray diffraction, and by following transmission and high-resolution electron microscopy annealing both above and below the glass-transition temperature. When annealed above this temperature, the amorphous phase undergoes segregation into regions about 100 nm in size having different chemical composition. Diffraction from such samples produces diffuse rings, and the scattering vector corresponding to the maximum intensity varies from point to point within the interval of 4.88 to 4.78 nm−1. When occurring between the glass-transition and crystallization temperatures, crystallization produces groups of nanocrystals, 20–30 nm in size, which are in direct contact with one another and form a polymorphic mechanism. The crystallization mechanism changes when the annealing temperature is brought below the glass-transition point. At these temperatures the amorphous matrix crystallizes entectically with formation of eutectic colonies. Fiz. Tverd. Tela (St. Petersburg) 40, 1577–1580 (September 1998)  相似文献   

3.
T Kohara 《Pramana》2002,58(5-6):755-760
NMR and NQR studies on two interesting systems (URu2Si2, CeTIn5) were performed under high pressure. (1) URu2Si2: In the pressure range 3.0 to 8.3 kbar, we have observed new 29Si NMR signals arising from the antiferromagnetic (AF) region besides the previously observed 29Si NMR signals which come from the paramagnetic (PM) region in the sample. This gives definite evidence for spatially-inhomogeneous development of AF ordering below T 0 of 17.5 K. The volume fraction is enhanced by applied pressure, whereas the value of internal field (∼91 mT) remains constant up to 8.3 kbar. In the AF region, the ordered moment is about one order of magnitude larger than 0.03 μB. (2) CeTIn5: The pressure and temperature (T) dependences of nuclear spin-lattice relaxation rate 1/T 1 of 115In in CeTIn5 have shown that the superconductivity (SC) occurs close to an AF instability. From the T dependences of 1/T 1 and Knight shift below T c. CeTIn5 has been found to exhibit non-s wave (probable d wave) SC with even parity and line nodes in the SC energy gap.  相似文献   

4.
The temperature dependences of the transverse expansion ?(T) and the longitudinal contraction ?(T) (with respect to the axes of chain molecules) in large-sized poly(ethylene) (PE) crystal grains (100×60×60 nm) are measured using x-ray diffraction in the temperature range 5–380 K. The temperature dependence of the elongation of the molecular skeleton ?C(T) is obtained by Raman spectroscopy. It is found that the dependences ?(T), ?(T), and ?C(T) exhibit a similar specific nonlinear behavior. Analysis of these dependences indicates that the nonlinearity is associated with the quantum statistics of transverse vibrations. The energies and amplitudes of zero-point (at T=0) transverse (torsional and bending) vibrations and the relevant zero-point components ?(0) and ?C(0) are estimated. It is revealed that the zero-point components make a considerable contribution to the dynamics of the PE crystal up to the melting temperature (~400 K).  相似文献   

5.
The paper deals with a study of the proton nuclear magnetic resonance (NMR) of crystallization water in isomorphous monohydrates MgSO4. 1 H2O and FeSO4. 1 H2O in the temperature range 123–313 K. The NMR second moment for diamagnetic MgSO4. 1 H2O shows only a weak dependence on temperature but the one for paramagnetic FeSO4. 1 H2O is rather strong. Results obtained for FeSO4. 1 H2O are in a good agreement with the Kroon's theory of NMR in paramagnetics. The Curie-Weiss constant and the effective magnetic moment of Fe2+ ions in FeSO4. 1 H2O are derived from the temperature dependence of NMR second moment. The motion of molecules of crystallization water in these hydrates is discussed on the basis of temperature dependences of the width and second moment of NMR spectra.  相似文献   

6.
The structure and infrared absorption of cubic silicon carbide (β-SiC) layers produced by the continuous high-dose implantation of carbon ions (C+) into silicon (E=40 keV and D=5×1017 cm−2), followed by the processing of the implanted layers with a high-power nanosecond pulsed ion beam (C+, τ=50 ns, E=300 keV, and W=1.0–1.5 J/cm2), are investigated. Transmission electron microscopy and electron diffraction data indicate the formation of a coarse-grained polycrystalline β-SiC layer with grain sizes of up to 100 nm. A characteristic feature of such a layer is the dendritic surface morphology, which is explained by crystallization from the melt supercooled well below the melting point of β-SiC.  相似文献   

7.
In this work, the molecular dynamics of four organic compounds confined in silica pores of nominal diameter 6 and 20 nm are studied by high-field (9.4 T) nuclear magnetic resonance (NMR), and the results are discussed with reference to the bulk substances. By using organic compounds forming soft plastic crystals on freezing as adsorbates, damage to the pore structures can be avoided. NMR lineshapes, spin-lattice relaxation times (T 1), spin-spin relaxation timesT 2 and diffusivities are reported as a function of temperature. Since the porous grains are much greater than the distance travelled by the molecules during the experiment, intracrystalline NMR parameters were obtained. However, the shortT 2 (∼1 ms) encountered in both the bulk and confined samples prohibited measurements ofT 2 and the diffusivity in the low-temperature ordered phases. The confinement in the pores gives rise to substantial changes in the phase behavior and molecular dynamics. Thus, the1H lineshape observations of the confined samples clearly reveal a narrow-line component superimposed on a broad resonance at temperatures well below the transition point of the bulk material. In the freezing region, the narrow-line component is attributed to the surface layer and the undercooled liquid in the smaller pores that remains unfrozen. In the two-component, low-temperature region, the narrow component corresponds to the surface layer, while the broad component originates from the crystalline phase at the center of the pores.  相似文献   

8.
The pore-size distributions of a series of mesoporous silica materials were determined by measuring the1H nuclear magnetic resonance (NMR) signal from the nonfrozen fraction of organic probe molecules as a function of temperature. The melting point distribution curves of confined benzene reveal 2–3 transition points. The high-temperature transition point, corresponding to the temperature at the first maximum of the melting point distribution curve, is interpreted as the average depressed melting point of the confined substance. However, the intensity data reveal that a measurable portion of the confined benzene apparently remains nonfrozen even 120 K below the bulk melting point in the 4–10 nm pore systems. The component at lowest temperature is largely attributed to the liquidlike molecules at the pore wall, while the component at the intermediate temperature might result from pockets in the solid matrix or even a bimodal pore-size distribution. The average pore-size distributions obtained by NMR agree fairly well with those obtained by N2 sorption. However, NMR gives a more detailed picture of the distribution, revealing two or three well-defined peaks. The peak at the smallest pore size, however, reflects the surface layer rather than a pore-size distribution.  相似文献   

9.
Exclusively microporous activated carbons have been prepared from cork by physical and chemical activation under different conditions. The results show that it is possible to control the pore size of the activated carbons and to obtain materials with narrow micropore size (≥0.69 nm) and high micropore volume (≤0.64 cm3 g−1) equal to or better than the best activated carbon fibres. Higher micropore volumes are generally obtained by chemical activation at higher temperature using dry or potassium hydroxide impregnation. On the other hand, wet or carbonate impregnation, as well as high temperature, or physical activation with CO2 or H2O under appropriate conditions, favours low mean pore widths.  相似文献   

10.
The pore size distributions of four controlled pore glasses and two silica gels with nominal diameters ranging from 6–24 nm were determined by measuring the1H nuclear magnetic resonance (NMR) signal from the nonfrozen fraction of confined cyclohexane as a function of temperature, in steps of ca. 0.1–1 K. The intensity curves of the liquid component are well represented by a sum of two error functions. The mean melting point depression of cyclohexane confined in pores with radiusR follows the simplified Gibbs-Thompson equation δT=k p/R with ak p value of 72.4 Knm. To our knowledge, this is the first time that thek p value of cyclohexane has been directly and accurately calibrated by NMR. As expected, thek p value mainly determines the position of the pore size distribution curve, i.e., the mean pore radius. The overall pore size distributions determined by NMR are in reasonable agreement with the results specified by the manufacturer, or measured by us by the N2 sorption technique. Although the melting point depression of confined cyclohexane is found to be less than previously assumed, this compound is still one of the most suitable candidates for NMR-based pore size determinations. However, pore sizes larger than approximately 50 nm in diameter will be difficult to determine accurately by NMR unless adsorbates undergoing larger melting point depressions than cyclohexane can be found.  相似文献   

11.
The temperature dependences of the elastic moduli C 44 (C 11 ? C 12)/2 and C l = (C 11 + C 12 + 2C 44)/2 of ZnSe : V2+ (impurity concentration, 6 × 1018 cm?3) and ZnSe : Mn2+ (9.4 × 1020 cm?3) are measured in the temperature range 1.4–100.0 K at frequencies of 52 and 156 MHz. The temperature dependences of the adiabatic elastic moduli are derived. It is established that softening of the symmetry modules is observed only in the crystal with an impurity having orbitally degenerate states.  相似文献   

12.
A high-density single-phase submicrometer ceramic Mn3O4 with a grain size d ≥ 0.06 μm has been obtained by using spherically converging shock waves. The action of shock waves reduces the unit cell volume and increases the Curie temperature T C . The shape of the temperature dependences of reciprocal susceptibility x ?1 of a polycrystal and the submicrometer ceramic at T > T C is hyperbolic, which is typical of ferrimagnets. It is shown that the susceptibility of the ceramic in the region of short-range order at 78 K ≤ T ≤ 300 K is larger than that of the polycrystal, while the field dependences of the magnetization are nonlinear. The bombardment by electrons with a small dose of Φ = 0.8 × 1018 cm?2 increases the susceptibility of the submicrometer ceramic as well as that of the polycrystal. When the fluence increases to Φ = 5 × 1018 cm?2, the susceptibility decreases, which can be explained by radiation-induced disordering and a change in the “local” exchange interactions.  相似文献   

13.
报道了用[二苯并-18-冠(醚)-6]修饰的碱金属富勒烯作核磁共振测试的一些结果.这类碱金属富勒烯呈现的奇特物理特性,反映了材料在低于200K温度下的磁有序性及电子磁矩与核磁矩的强相互作用,使共振信号增强,亦反映了超分子化学能调控碱金属富勒烯的物理性能 关键词:  相似文献   

14.
Bromine oxides are of significant interest due to their importance in atmospheric chemistry. Density functional theory (DFT) methods have been used in conjunction with a DZP++ (double-ζ plus polarization with diffuse functions) basis set to study the molecular geometries and total energies of BrOn and BrO- n (n = 1-4). The adiabatic electron affinity (EAad), the vertical electron affinity (EAvert) of the bromine oxide and the vertical detachment energy (VDE) of each anion are reported. Harmonic vibrational frequencies and zero point energies are also reported. Five different DFT methods were employed for comparison. Among these, the BHLYP method predicts the geometries and the vibrational frequencies in best agreement with available experimental data, while the the other methods do better in predicting the limited number of energetic quantities determined observationally. The predicted adiabatic electron affinities are 2.38 eV (BrO, experiment 2.35 eV), 2.36 eV (BrO2), 3.35 eV (BrOO), 4.32 eV (BrO3), 2.91 eV (BrOOO) and 5.28 eV (BrO4). The electronic ground state of BrOO- is a triplet (3A") state. Predicted Br–;O bond distances range from 1.61 (BrO3) to more than 2 Å for Br...O2 for the neutral molecules; and from 1.61 Å for BrO- to 1.82 Å for BrO- to more than 2 Å for Br-...O3 among the anions. The BrOO isomer (Cs symmetry) is predicted to lie 17–18 kcal mol-1 below the C2v symmetry OBrO structure. The asymmetric 3A" anion BrOO- analogously lies below OBrO-, in this case by 40–41 kcalmol-1. BrOOO (Cs symmetry) is predicted to lie 42-45 kcalmol-1 below the symmetric C3v BrO structure. Finally the asymmetric BrOOO- anion (C1 symmetry) is predicted to lie 10-13kcal mol-1 below symmetric C3v BrO- 3.  相似文献   

15.
The photoluminescence spectrum of the layered ZrS3 crystal shows several narrow emission lines under the excitation by an Ar+ laser in the wavelength range from 605–630 nm at 4.2 K. The excitation spectra for these emission lines and their temperature dependences suggest that the observed narrow emission lines originate from the radiative annihilation of indirect excitons bound to impurities. Some of these emission lines seem to be associated with the radiative annihilation of the indirect bound exciton with emission of phonons.  相似文献   

16.
The proton spin-lattice relaxation time T1, in the nematic liquid crystal 4-pentyl-4′-cyanobiphenyl confined in a glassy porous matrix has been measured in a wide Larmor frequency range of 1 · 102?2 · 107 Hz employing the fast field-cycling NMR technique. A strong influence of the restricted geometry on the character of the T1 dispersion was found. Our investigation clearly demonstrates the importance of the translationally induced molecular reorientations in inhomogeneous director field for the relaxation in the samples with 200 and 80 nm mean pore size. The experimental results are in a good agreement with the theoretical predictions. In the sample with 7 nm pore size the main contribution to the relaxation is ascribed to the slowing down of the molecular motion in the near-surface layer. Zero-field 1H NMR spectra of a microconfined liquid crystal are reported for the first time.  相似文献   

17.
The nonisothermal crystallization behavior of polypropylene (PP) and PP-fullerene (C60) nanocomposites was studied by differential scanning calorimetry (DSC). The kinetic models based on the Jeziorny, Ozawa, and Mo methods were used to analyze the nonisothermal crystallization process. The onset crystallization temperature (Tc), half-time for the crystallization (t1/2), kinetic parameter (F(T)) by the Mo method and activation energy (ΔE) estimated by the Kissinger method showed that C60 accelerates the crystallization of PP, implying a nucleating role of C60. Furthermore, due to the reduced viscosity of PP by adding 5% C60, the parameters of crystallization kinetics for the PP-5%C60 nanocomposites changed remarkably relative to that of neat PP and when lower contents of C60 were added to PP.  相似文献   

18.
Fused silica plates have been implanted with 40 keV Co+ or Ni+ ions to high doses in the range of (0.25–1.0) × 1017 ions/cm2, and magnetic properties of the implanted samples have been studied with ferromagnetic resonance (FMR) technique supplemented by transmission electron microscopy, electron diffraction and energy dispersive X-ray spectroscopy. The high-dose implantation with 3d-ions results in the formation of cobalt and nickel metal nanoparticles in the irradiated subsurface layer of the SiO2 matrix. Co and Ni nanocrystals with hexagonal close packing and face-centered cubic structures have a spherical shape and the sizes of 4–5 nm (for cobalt) and 6–14 nm (for nickel) in diameter. Room-temperature FMR signals from ensembles of Co and Ni nanoparticles implanted in the SiO2 matrix exhibit an out-of-plane uniaxial magnetic anisotropy that is typical for thin magnetic films. The dose and temperature dependences of FMR spectra have been analyzed using the Kittel formalism, and the effective magnetization and g-factor values have been obtained for Co- and Ni-implanted samples. Nonsymmetric FMR line shapes have been fitted by a sum of two symmetrical curves. The dependences of the magnetic parameters of each curve on the implantation dose and temperature are presented.  相似文献   

19.
We doped Ho3+ in CoFe1.95Ho0.05O4 spinel ferrite by mechanical alloying and subsequent annealing at different temperatures (600-1200 °C). We understood the structural and magnetic properties of the samples using X-ray diffraction, SEM, Thermal analysis (TGA and DTA), and VSM measurement. The samples have shown structural stabilization within cubic spinel phase for the annealing temperature (TAN)≥800 °C. Thermal activated grain growth kinetics has been accompanied with the substantial decrease in lattice strain. The gain size dependent magnetism is evident from the variation of magnetic moment, remanent magnetization and coercivity of the material. The paramagnetic to ferrimagnetic transition temperature TC (∼805 K) seems to be grain size independent in the present material. The magnetic nanograins, either single domain/pseudo-single domain (50-64 nm) or multi-domain (above 64 nm) regime, showed superparamagnetic blocking below Tm, which is below TC (805 K) and also well above the room temperature.  相似文献   

20.
Titanium deuterides TiD1.92, TiD1.98, and TiD2.0 have been studied by 2H and 47, 49Ti NMR in a magnetic field of 7.04 T and a temperature range of 120–500 K. At all temperatures and compositions, the 2H NMR line is a singlet described by the Gaussian function. The contribution of demagnetizing fields to the 2H NMR shift is ∼50 ppm. The titanium NMR spectra for all compositions comprise two signals due to the 47Ti and 49Ti isotopes. The shift between these signals depends on the deuterium content and temperature. The 47, 49Ti NMR line shape, width, and shifts have been considered in the framework of second-order quadrupole effects for a tetragonal lattice distortion and random distribution of vacancies. The Knight shifts σ(2H) and K(47, 49Ti) are a function of temperature with a clearly pronounced singularity at ∼300 K. The contact, orbital, and polarization contributions to the Knight shifts have been estimated from analysis of the temperature dependences of σ(2H) and K(47, 49Ti).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号