首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 716 毫秒
1.
W. Sun  G. Fu 《哲学杂志》2013,93(2):337-353
A gold nanoparticles/monolithic mesoporous silica assembly was synthesized by ultrasonic irradiation of monolithic porous silica presoaked with precursor solution. Subsequent exposure to ambient air (ageing) and then drying at 120°C induce a new optical absorption peak around 470?nm (falling into the range from 460 to 475?nm) which is stable at room temperature, in addition to the normal surface plasmon resonance (SPR) of Au nanoparticles. Further drying results in the decline and disappearance of this peak, accompanied by increase of the normal SPR. If the sample, in which the new peak has disappeared due to long drying at 120°C, is exposed to the ambience once more, this peak will appear again after subsequent drying at 120°C, showing reversibility. Further experiments indicate that ambient ageing for a certain time plays a crucial role in the appearance of the new peak after subsequent drying at 120°C. Increased ageing time increases this peak. In addition, the ambient relative humidity and temperature during exposure are also important to the appearance of this peak. This peak may be associated with Au clusters with a size less than 1.5?nm. Based on the porous structure of the assembly and hydrophilicity of its pore wall, a nanodroplet formation and evaporation model is presented which can well explain all evolution behaviours of this peak. The model predicts the existence of the peak at 470?nm in the Au/silica assembly prepared by methods other than ultrasonic irradiation, which has also been confirmed by further experiments.  相似文献   

2.
Sol–gel glasses are porous networks that have been densified through chemical processing and heat treatment. Due to their relative insolubility in silica, rare earth (RE) ions in silicate glasses enter as network modifiers and compete for non-bridging oxygens in order to complete their coordination. Energy transfer between Tb3+ ions is used here to study the distribution of RE ions in these porous glasses. The non-exponential decay of the 5D3 fluorescence is due to cross relaxation. Using a model for energy transfer in fractional dimensions and fitting the decay profile to a stretched exponential, the number of nearby Tb3+ ions and the dimensionality of the Tb3+ ions in the pores could be determined. Analysis indicates that the observed fluorescence originates from relatively isolated ions. Samples annealed below 950 °C exhibit a dimensionality of ~1.2.  相似文献   

3.
A series of silica doped with different mol percentages of Ce3+ concentration was synthesized using a sol-gel method to determine the dependence of photoluminescence wavelengths and intensity on the concentrations of the dopants. Sol-gel glasses are porous networks that have been densified through chemical processing and heat treatment. Rare-earths (REs) are insoluble in silica; due to this insolubility RE ions in silicate glasses enter as network modifiers and compete for non-bridging oxygen in order to complete their coordination. The morphological, structural, thermal and optical properties of the phosphors were characterized by X-ray diffraction, scanning electron microscopy, UV-vis absorption, photoluminescence, thermogravimetric analyses and differential scanning calorimeter. Silica (SiO2) gel containing Ce3+ ions was sputter coated with Au (gold) in order to monitor surface morphology of the samples. The highest emission intensity was found for the sample with a composition of 0.5 mol% Ce3+. Cerium doped silica glasses had broad blue emission corresponding to the 2D3/2-2FJ transition at 448 nm but exhibited apparent concentration quenching above concentrations of 0.5 mol% Ce3+.  相似文献   

4.
Abstract

The densification mechanism of borosilicate glass, silica gel and amorphous titania powders by hydrothermal hot-pressing is described. The glass powders were densified by a viscous flow mechanism, and fully dedfied compacts were obtained by hydrothermal hot-pressing. On the other hand, porous ceramics were produced from silica gel and amorphous titania. The pore size distribution of these ceramics could be controlled by hydrothermal hot-pressing conditions. In the case of silica gel, it remained amorphous, but amorphous titaaia was crystallized to anatase by hydrothermal hot-pressing. The pore diameter and mechanical strength of the compacts prepared from silica gel increased with reaction time. The densification of the amorphous titania was improved by increasing temperature and pressure.  相似文献   

5.
We investigate the photosensitivity of binary 20GeO2:80SiO2 (germanosilicate) inorganic films. The samples have been fabricated by the sol–gel spin-coating method and the densification has been performed by rapid thermal annealing at various temperatures ranging from 500 °C to 1000 °C. The –OH absorption bands in the Fourier-transform infrared (FTIR) spectra and the refractive-index data show that the films annealed below 900 °C are porous and the films annealed at 900 °C and above are dense. An ultraviolet (UV) KrF laser at 248 nm has been used to induce the change in the refractive index of the samples. We have achieved a large refractive-index change (Δn) of 0.0098 after UV illumination in excess of 1 min for our dense germanosilicate films. This UV-induced refractive-index change is attributed to the formation of GeE’/SiE’ centers from Ge–Ge/Si–Si (neutral oxygen monovacancy) and Ge2+ centers and to the creation of oxygen deficiency related defects. From our experiments, the oxygen deficiency related defects correspond to the absorption band at 620–740 cm-1 in the FTIR spectra and these are the defects which make a large contribution to Δn. The attenuation coefficient of the as-deposited and UV-illuminated dense samples is about 0.42 dB/cm at 1550 nm. For porous samples, UV exposure has densified the samples to some extent. PACS 82.50.Hp; 71.23.Cq; 81.20.Fw  相似文献   

6.
We experimentally investigate the spectral extent and spectral profile of the supercontinuum (SC) generated in transparent solids: barium fluoride, calcium fluoride, and fused silica upon irradiation by intense femtosecond-long pulses of 800, 1,380, and 2,200 nm light. These wavelengths correspond to the normal and anomalous group velocity dispersion (GVD) regimes in fused silica calcium fluoride and barium fluoride. We observe an isolated (anti-Stokes) wing on the blue side most prominently in fused silica but also in CaF2. The SC conversion efficiency is measured for the long wavelengths used in our experiments. We also present results on filamentation in BaF2 in the anomalous GVD regime, including visualization of focusing–refocusing events within the crystal; the size of a single filament is also determined. The 15-photon absorption cross section in BaF2 is deduced to be 6.5 × 10?190 cm30 W?15 s?1.  相似文献   

7.
何祥  王刚  赵恒  马平 《中国物理 B》2016,25(4):48104-048104
This paper mainly focuses on the influence of colloidal silica polishing on the damage performance of fused silica optics. In this paper, nanometer sized colloidal silica and micron sized ceria are used to polish fused silica optics. The colloidal silica polished samples and ceria polished samples exhibit that the root-mean-squared(RMS) average surface roughness values are 0.7 nm and 1.0 nm, respectively. The subsurface defects and damage performance of the polished optics are analyzed and discussed. It is revealed that colloidal silica polishing will introduce much fewer absorptive contaminant elements and subsurface damages especially no trailing indentation fracture. The 355-nm laser damage test reveals that each of the fused silica samples polished with colloidal silica has a much higher damage threshold and lower damage density than ceria polished samples. Colloidal silica polishing is potential in manufacturing high power laser optics.  相似文献   

8.
This work deals with the low-temperature preparation of optically active silica-based materials. Tb3+-doped silica monolithic gels were elaborated at 40 °C. Tb3+–SSA-doped SiO2–TiO2 thin films were deposited by an original sol–gel approach, the aerosol–gel process, and heat-treated at 150 °C. Organic complexation of terbium ions was used to improve the active properties of doped silica gels and thin-film samples. Spectroscopic characterisations are reported for these samples. Photoluminescence increase by a factor two was observed for complexation by sulphosalicylic acid. Received: 16 May 2001 / Revised version: 31 August 2001 / Published online: 23 October 2001  相似文献   

9.
Carbon/silica-nanostructured microfibers were synthesized via electrospinning method using phenol-formaldehyde resin and tetraethyl orthosilicate as carbon and silica precursor with triblock copolymer Pluronic P123 as soft template. The prepared samples show uniform microfiber structure with ~1 μm in diameter and dozens of microns in length. Additionally, the mesopores in the material is about 2–6 nm. When the silica component was removed by HF, the porous carbon microfibers (PCMFs) were obtained. In addition, after the carbon/silica composites were calcined in air, the porous silica microfibers (PSiMFs) were obtained, revealing the converse porous nanostructure as PCMFs. It is a simple way to prepare PCMFs and PSiMFs with silica and carbon as the template to each other. Additionally, PCMFs possess an ultrahigh specific surface area (2,092 m2 g?1) and large pore volume. The electrochemical performance of the prepared PCMF material was investigated in 6.0 M KOH electrolyte. The PCMF electrode exhibits a high specific capacitance (252 F g?1 at 0.5 A g?1). Then, superior cycling stability (97 % retention after 4,000 cycles) mainly is due to its unique nanostructure.  相似文献   

10.
This paper describes the preparation, by a novel and simple method, and the thermal stability of gold nanowires within monolithic mesoporous silica, involving soaking monolithic mesoporous silica in HAuCl4 aqueous solution, followed by drying and subsequent step-annealing. It has been shown that reduction of Au3+ within silica pores can occur during the drying process at 80 °C without any special reduction treatment. After initial annealing at 300 °C, Au nanowires are formed within the pores and are stable at temperatures up to 500 °C. Increasing the annealing temperature leads to a wire-to-rod-to-sphere morphological transformation of the Au nanowires. The surface-mediated reducing groups (-OH) on the silica pore are responsible for the low-temperature reduction of Au3+ ions, and the formation of Au nanowires is attributed to the uni-directional diffusion of Au atoms and the confinement of the pore channels. Spheroidization and breaking at some defects in the Au nanowires during annealing at elevated temperature result in the wire-to-rod-to-sphere transformation, accompanied by a blue-shift of the surface plasmon resonance over a very wide region in the optical spectrum. PACS 81.07.-b; 81.40.-z; 81.05.Rm  相似文献   

11.
A substantial extension of the method of two-beam interferometric laser induced backside wet etching (TWIN-LIBWE), the immersion TWIN-LIBWE, is used to fabricate fused silica gratings with a 104 nm period. The spatially filtered fourth harmonic of Nd:YAG laser (λ=266 nm, τFWHM=8 ns) pulses were split into two parts which then interfered at the backside of the fused silica target in contact with a liquid absorber (naphthalene methyl methacrylate saturated solution with a concentration of 1.85 mol/dm3). The hypotenuse of a rectangular fused silica prism is attached to the fused silica target with the use of distilled water as the immersion liquid. On steering the beams through the sides of the prisms, the angle between the two laser beams has been substantially increased. The resulting period of 104 nm is the minimal grating constant achievable under such experimental conditions and, to our knowledge, the smallest laser generated grating period in fused silica at present. PACS 42.62; 42.79; 81.65  相似文献   

12.
The solgel process has been successfully used to prepare silver/silica nanocomposites. After drying in air at 50°C for 30 min, samples were heat treated in air, at 100, 200, 400 and 500°C for the formation of silver nanoparticles. Evolution of silver nano-particles in the amorphous SiO2 matrix as a function of annealing temperature has been studied. Characterizations were made by X-ray diffraction, ultraviolet-visible, and infrared spectroscopy. Mechanisms of silver clusters formation in the densified silica matrix with respect to thermal treatment are discussed.  相似文献   

13.
Atomic-scale structural changes have been observed in the glass network of fused silica after modification by tightly focused 800-nm, 130-fs laser pulses at fluences between 5 and 200 J cm-2. Raman spectroscopy of the modified glass shows an increase in the 490 and 605-cm-1 peaks, indicating an increase in the number of 4- and 3-membered ring structures in the silica network. These results provide evidence that densification of the glass occurs after exposure to fs pulses. Fluorescence spectroscopy of the modified glass shows a broad fluorescence band at 630 nm, indicating the formation of non-bridging oxygen hole centers (NBOHC) by fs pulses. Waveguides that support the fundamental mode at 633 nm have been fabricated inside fused silica by scanning the glass along the fs laser beam axis. The index changes are estimated to be approximately 0.07×10-3. Received: 17 December 2001 / Accepted: 9 July 2002 / Published online: 25 October 2002 RID="*" ID="*"Corresponding author. Fax: +1-925/423-2463, E-mail: dmkrol@ucdavis.edu  相似文献   

14.
Thiol-functionalized MCM-41 mesoporous silicas were synthesized via evaporation-induced self-assembly. The mesoporous silicas obtained were characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption analysis, Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The products were used as adsorbents to remove heavy metal ions from water. The mesoporous silicas (adsorbent A) with high pore diameter (centered at 5.27 nm) exhibited the largest adsorption capacity, with a BET surface area of 421.9 m2 g?1 and pore volume of 0.556 cmg?1. Different anions influenced the adsorption of Cu(II) in the order NO3 ? < OAc? < SO4 2? < CO3 2? < Cit? < Cl?. Analysis of adsorption isotherms showed that Cu2+, Pb2+, Ag+, and Cr3+ adsorption fit the Redlich–Peterson nonlinear model. The mesoporous silicas synthesized in the work can be used as adsorbents to remove heavy metal ions from water effectively. The removal rate was high, and the adsorbent could be regenerated by acid treatment without changing its properties.  相似文献   

15.
Nanostructured carbons have been obtained by the template method using zeolite NaY and silica gels (SG60, Fluka and ZK, POCh) as structure directing agents. Texture and porous structure of carbons were characterized by TEM, XRD and nitrogen adsorption. Surface chemistry was investigated by the potentiometric titration method. It has been shown that all carbons show developed and uniform porous structure with mean size in the micropore range (1.1 nm) for zeolite derived carbon and in the mesopore range (3.4 and 4.8 nm) for silica gel derived carbons. The BET surface area of silica gel derived carbons is in the range 1230-1280 m2/g whereas zeolite derived carbon possesses very high BET surface area, 3000 m2/g. Potentiometric titration showed that carbons obtained by the template method contain significant amount of acid surface groups (carboxylic, lactone/enol and phenolic) with the total amount 1.1-1.5 mmol/g. To study adsorption-desorption properties of nanostructured carbons towards phenol and chlorophenols the solid phase extraction method was used. High recoveries of chlorophenols were obtained (80-93%) at the breakthrough volumes 1700-3000 mL. The recoveries are much higher than that obtained with commercially available carbon ACC (Supelco).  相似文献   

16.
High silica glass doped with Eu2+ ions was prepared as a scintillating material by impregnation of Eu ions into a porous silica glass followed by reduction sintering in CO atmosphere. A dominant emission band of the Eu2+ 5d–4f transition peaking around 430 nm was observed in the luminescence spectrum with the excitation peak around 280 nm and no emission from Eu3+ was present. Photoluminescence decay kinetics was governed by decay times of a few microseconds. The Eu2+‐doped high silica glass exhibited comparable energy resolution and slightly higher photoelectron yield with respect to the Bi4Ge3O12 crystal in the pulse height spectra for X‐ray photon energies within 22–60 keV. Furthermore, a factor of 1.2 higher radioluminescence intensity was observed as well. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Nano-sized silica poly(methylmethacrylate)-based gel electrolyte containing lithium hexafluorophosphate (LiPF6) was synthesized by using different binary solvent mixture (propylene carbonate(PC) and dimethylformamide (DMF) in different volume ratio). Role of DMF in PC: Higher DMF content in PC-based electrolyte shows higher ionic conductivity at all polymer content and at wide temperature regions (10-70 °C). A small increment in ionic conductivity at lower content of polymer in liquid/gel electrolyte was observed and having maximum conductivity of 13.12 mS/cm at 25 °C. Stability (mechanically and electrically), viscosity and ionic conductivity of gel electrolytes were improved with the addition of nano-sized silica at ambient temperature. Ionic conductivity of nano-sized silica-based gel electrolyte does not change much over 5o–70 °C temperature range and is factor-wise only which make indispensable in different electrochemical devices. Also polymer gel electrolyte membranes as such and with dispersed silica nano-particles were characterized through scanning electron microscope to study the morphology of gel matrix.  相似文献   

18.
Irradiation effect of low-energy ion beam has been investigated on nanocoating developed with silica, titania and silica–titania core–shell nanoparticles embedded in an organic binder for nanopaint application. In this work, we have taken polyurethane as a model organic binder. Silica nanoparticles have been prepared through sol–gel synthesis with a particle size of 85?nm. Titania and core–shell nanoparticles have been prepared through both sol–gel and peptization process. Particle sizes obtained were 107?nm for titania and 240?nm for core–shell nanoparticles prepared through sol–gel process and 75?nm for TiO2 and 144?nm for core–shell nanoparticles prepared through peptization process. The coating formulations were developed with the above nanoparticles individually and nanoparticle concentration was varied from 1 to 6?wt% and the best performance in terms of hydrophobicity was obtained with 4?wt % of the nanoparticles in polyurethane coating formulation. All the coating formulations prepared were applied on a glass substrate and dried at 100°C. The dry film thickness obtained was around 100?µm in each case. These films dried on glass substrate were irradiated by nitrogen and argon ion beam with energy of 26?keV at fluences of 1014 to 1016?ions/cm2. The anti-algal property of the irradiated samples was improved and hydrophobicity was reduced.  相似文献   

19.
The roughness of fused silica, silicon, and sapphire substrates from different manufacturers is studied. Features of the substrates for imaging optics in the soft X-ray (SXR) and extreme UV (EUV) ranges are discussed. The first results from smoothing quartz substrates by etching with neutralized 50–500-eV argon beams are reported. Surface smoothing has been observed in the spatial-frequency range of 10-1-10-2 μm-1.  相似文献   

20.
为了研究静/动态刻蚀过程中熔石英表面质量和抗激光损伤性能的演变规律,优化化学刻蚀工艺,使用HF酸缓冲液对熔石英分别进行了不同时间的静/动态刻蚀处理。实验表明,由于兆声场辅助搅拌作用,熔石英动态刻蚀的刻蚀速率快于静态刻蚀。动态刻蚀后熔石英表面均方根(RMS)粗糙度和反射面形分别为 < 1 nm和0.46λ,其3倍频透射率先小幅增加后保持稳定,相比初始表面增加约0.1%。而静态刻蚀使得表面RMS粗糙度和反射面形分别增加至~5 nm和0.82λ,其3倍频透射率先基本不变后下降,相比初始表面下降约0.4%。二者损伤阈值呈现明显不同变化规律:静态刻蚀使熔石英损伤阈值先小幅增加约30%后逐渐降低,动态刻蚀使熔石英损伤阈值增加近一倍后保持相对稳定。结果表明,动态刻蚀后熔石英光学元件性能明显优于静态刻蚀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号