首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The present paper addresses the high-pressure phase transformation and mechanical properties of Ga1-xInxAs (x = 0.25, 0.5 and 0.75) by formulating an effective interionic interaction potential. This potential consists of the long-range Coulomb and charge transfer caused by the deformation of the electron shells of the overlapping ions and the Hafemeister and Flygare type short-range overlap repulsion extended upto the second neighbor ions and the van der Waals (vdW) interaction. The estimated values of phase transition pressure and the vast volume discontinuity in pressure-volume (PV) phase diagram indicate the structural phase transition from zinc blende (B3) to rock salt (B1). The equation of state curves plotted between V (P)/ V (0) and pressure are for both the zincblende (B3) and rocksalt (B1) structures. Further, the variations of the second and third order elastic constants with pressure have followed a systematic trend, which are almost identical to those exhibited by the observed data measured for other compounds of this family.  相似文献   

2.
3.
The mechanical, thermodynamical and elastic properties of Hg0.91Mn0.09Te compound are calculated by formulating an effective interionic interaction potential. This potential consists of the long-range Coulomb, three body force parameter, the Hafemeister and Flygare type short-range overlap repulsion extended upto the second neighbor ions and the van der Waals (vdW) interaction. The estimated values of phase transition pressure have revealed reasonably good agreement with the available experimental data on the phase transition pressure P t = 11.5 GPa and the vast volume discontinuity in pressure-volume (PV) phase diagram indicate the structural phase transition from zincblende (B3) to rock salt (B1) structure. Later on, the Poisson’s ratio ν, the ratio R S/B of S (Voigt averaged shear modulus) over B (bulk modulus), elastic anisotropy parameter, elastic wave velocity, average wave velocity and Debye temperature as functions of pressure is calculated. From Poisson’s ratio and the ratio R S/B it is inferred that Hg0.91Mn0.09Te is brittle in nature in both B3 phase and B1 phase. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of ductile (brittle) nature of Hg0.91Mn0.09Te compounds and still awaits experimental confirmations.  相似文献   

4.
A theoretical study of the elastic properties in diluted magnetic semiconductors Hg1−xMnxS (x=0.02 and 0.07) using an effective interionic interaction potential (EIoIP) in which long-range Coulomb interactions, charge transfer mechanism (three body interaction) and the Hafemeister and Flygare type short-range overlap repulsion extending up to the second neighbor ions and the van der Waals (vdW) interaction is considered. Particular attention is devoted to evaluate Poisson's ratio ν, the ratio RS/B of S (Voigt averaged shear modulus) over B (bulk modulus), elastic anisotropy parameter, elastic wave velocity, average wave velocity and thermodynamic property as Debye temperature is calculated. By analyzing Poisson's ratio ν and the ratio RS/B we conclude that Hg1−xMnxS is brittle in zinc blende (B3). To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of ductile (brittle) nature of Hg1−xMnxS compounds and still awaits experimental confirmations.  相似文献   

5.
吕兵  令狐荣锋  易勇  杨向东 《中国物理 B》2010,19(7):76201-076201
This paper carries out the First principles calculation of the crystal structures (zinc blende (B3) and rocksalt (B1)) and phase transition of boron arsenic (BAs) based on the density-functional theory. Using the relation between enthalpy and pressure, it finds that the transition phase from the B3 structural to the B1 structural occurs at the pressure of 113.42GPa. Then the elastic constants C11, C12, C44, bulk modulus, shear modulus, Young modulus, anisotropy factor, Kleinman parameter and Poisson ratio are discussed in detail for two polymorphs of BAs. The results of the structural parameters and elastic properties in B3 structure are in good agreement with the available theoretical and experimental values.  相似文献   

6.
An ab initio constant pressure technique is carried out to study the pressure-induced phase transition of the zinc blende AlN (aluminum nitride). A first order phase transformation into a rock salt structure is observed in the constant pressure simulations. The transformation is accompanied by an initial tetragonal distortion and a subsequent shearing, similar to that found in the other zinc blende structured materials. This phase transition should occur around 6.2 GPa based upon the enthalpy calculations.  相似文献   

7.
The local magnetic structures around substitutional 3d transition metal impurities at cation sites in zinc blende structures of III-V (GaN, GaAs) and II-VI (ZnTe) semiconductors are investigated by using a spin-polarized density functional theory. We find that Cr-, Co-, Cu-doped GaN, Cr-, Mn-doped GaAs and Cr-, Fe-, Ni-doped ZnTe are half metallic with 100% spin polarization. The magnetic moments due to these 3d transition metal (TM) ions are delocalized quite significantly on the surrounding ions of host semiconductors. These doped TM ions have long range interactions mediated through the induced magnetic moments in anions and cations of host semiconductors. For low impurity concentrations Mn in GaAs also has zero magnetic moment state due to Jahn-Teller structural distortions. Based upon half metallic character and delocalization of magnetic moments in the anions and cations of host semiconductors these above mentioned 3d TM-doped GaN, GaAs and ZnTe seem to be good candidates for spintronic applications.  相似文献   

8.
The pressure dependence of thelo-to phonons in InAs has been investigated by Raman scattering using the diamond anvil cell. Indium arsenide transforms, presumably to the rock-salt structure at 70±1 kbar. The mode Grüneisen parameters for thelo-to phonons are γ lo =0.99±0.03, γ to =1.2±0.03 respectively. The effective charge,e* T , for InAs decreases slightly with pressure and this trend is in accordance with the behaviour of other III–V zinc blende structured semiconductors: The structural phase transition is discussed in the light of theoretical calculations for phase stability of III–V compounds, as well as recent high pressure x-ray diffraction studies.  相似文献   

9.
Pressure induced structural aspects of NaCl-type (B1) to CsCl-type (B2) structure in alkaline earth chalcogenides (AECs) magnesium chalcogenides (MgX; X=S, Se, and Te) are presented. An effective interionic interaction potential (EIoIP) with long-range Coulomb interactions and the Hafemeister and Flygare type short-range overlap repulsion extending up to the second neighbor ions and the van der Waals (vdW) interaction is developed. The vdW coefficients are evaluated following the Slater-Kirkwood variational method, as both the ions are polarizable. The present calculations have revealed reasonably good agreement with the available experimental data on structural transition (B1-B2 structure), the phase transition pressures Pt of 167 (MgS), 170 (MgSe), and 176 (MgTe) GPa as well the elastic properties. The calculated values of the volume collapses [ΔV(P)/V(0)] are also closer to their observed data. Further, the variations of the second and third order elastic constants with pressure have followed a systematic trend, which are almost identical to those exhibited by the observed data measured for other semiconducting compounds with rocksalt (B1) type crystal structure. The Born and relative stability criteria is valid in Mg monochalcogenides.  相似文献   

10.
The behavior under pressure of the high spin–low spin phase transition in the coordination compounds containing 3d ions is analyzed using thermodynamic and microscopic approaches. For thermodynamic approach the mean field model with interactions between spin-crossover molecules is considered. Microscopic model takes into account the interaction of d electrons of the transition metal ions with full symmetric distortions of the ligands. The relationship of the thermodynamic interaction parameters with microscopic ones is installed and shown how the quantum–mechanical interactions form the cooperativity of the system. Within the microscopic model the temperature and pressure dependences of the high spin fraction in 2-D compounds {Fe(3-Fpy)2[M(CN)4]} (M=Pd, Pt) are simulated and microscopic parameters are evaluated. It is concluded that different experimental behaviors of the temperature and pressure induced spin transitions are determined by different variations of the inelastic and elastic energies under pressure, and vibrational component of the free energy drives the ST equally with electronic part.  相似文献   

11.
In situ Hall effect measurement of HgSe was conducted up to 31?GPa. It was found that the carrier parameters changed discontinuously at each phase transition. The resistivity variation under compression was described by the carrier parameters. The decrease in cinnabar mobility indicates that the interaction between the helical chains becomes stronger under pressure. Combining the results of experiment and theory calculation, it can be concluded that in the phase transition process from zinc blende through cinnabar to rock salt, if Hg atom is mainly displaced , hole will be generated and its concentration will increase; on the contrary, if Se atom is mainly displaced, electrons will be generated and their concentration will increase.  相似文献   

12.
Ab initio calculations are performed to investigate the structural stability, electronic, structural and mechanical properties of 4d transition metal nitrides TMN (TM=Ru, Rh, Pd) for five different crystal structures, namely NaCl, CsCl, zinc blende, NiAs and wurtzite. Among the considered structures, zinc blende structure is found to be the most stable one among all three nitrides at normal pressure. A structural phase transition from ZB to NiAs phase is predicted at a pressure of 104 GPa, 50.5 GPa and 56 GPa for RuN, RhN and PdN respectively. The electronic structure reveals that these nitrides are metallic. The calculated elastic constants indicate that these nitrides are mechanically stable at ambient condition.  相似文献   

13.
李晓凤  刘中利  彭卫民  赵阿可 《物理学报》2011,60(7):76501-076501
利用密度泛函理论的平面波赝势方法预测研究了CaPo从岩盐结构(B1结构)到氯化铯结构(B2结构)的相变以及B1结构CaPo高压下的弹性性质以及热力学性质等.通过等焓原理发现B1→B2的相变压力为22.8GPa. 同时计算了B1结构CaPo高压下的弹性常数以及剪切模量、杨氏模量等相关弹性参数,结果发现当压力超过20GPa时,B1结构CaPo开始不稳定了,这和等焓原理所得结果相符合. 最后通过Debye模型成功获取了B1结构C 关键词: 相变 弹性性质 热力学性质 CaPo  相似文献   

14.
Using the thermopower method (Seebeck effect), the semiconductor-metal transition that occurs in gallium arsenide single crystals of n and p types at ultrahigh pressures P above ~11–18 GPa has been studied. It has been found that the transition in n-type samples begins at lower pressures. In the region of the semiconductor-metal phase transition, features have been observed on the thermopower dependences S(P). These features indicate that lattices intermediate between the initial semiconductor structure of zinc blende and the Cmcm high-pressure orthorhombic metallic phase are formed. By analogy with ZnTe, one intermediate phase (semiconductor with hole conductivity) is suggested to have the cinnabar structure and the second intermediate phase (semimetallic with electron conductivity) possibly has the SC16 structure. A model of the semiconductor-metal transition is discussed. The behavior of the thermoelectric properties in GaAs under pressure is compared with the behavior of these properties in other ANB8?N semiconductors, which also undergo the transition to the metallic state.  相似文献   

15.
The electronic and elastic properties of cubic 5d transition metal monocarbides in rocksalt, cesium chloride, and zinc blende structures have been studied by first principles calculations. The calculations show that the incompressibility for ReC in cesium chloride structure is even higher than that of diamond under pressure (above 89 GPa). The transformation pressure from zinc blende structure to rocksalt structure takes place at about 47 GPa for PtC. HfC-NaCl, ReC-CsCl, and HfC-ZnS have the smallest metallicity, leading to higher hardness. A valence electron number of 8/cell may be a stable valence shell configuration for 5d transition metal monocarbides in rocksalt and zinc blende structures.  相似文献   

16.
The structural changes within the Silver iodide (AgI) and Copper iodide (CuI) induced by pressure have been investigated using an effective interaction potential. CuI and AgI in their parent zinc blende (ZnS) to rock salt (NaCl) through an intermediate structure have been reported. The calculated values for the phase transition pressures and associate volume collapses are generally in good agreement with measured data.   相似文献   

17.
A pressure induced structural phase transition from NaCl-type (B1) to CsCl-type (B2) structure has been predicted in transition metal carbides, namely TiC, ZrC, NbC, HfC, and TaC by using an interionic potential theory with modified ionic charge (Zm ), which includes Coulomb screening effect due to d-electron. The phase transition pressure (PT ) relies on large volume discontinuity in pressure–volume relationship, and identifies the structural phase transition from B1 phase to B2 phase. The variation of second-order elastic constants with pressure follows a systematic trend identical to that observed in other compounds of NaCl-type structure. The Born criterion for stability is found to be valid in transition metal carbides.  相似文献   

18.
The present paper addresses the pressure-induced structural aspects of ZnS-type (B3) to NaCl-type (B1) structure in AlY (Y=N, P, As). An effective-interionic interaction potential (EIoIP) with long-range Coulomb and three-body interactions and the Hafemeister-and-Flygare-type short-range overlap repulsion extended up to the second-neighbour ions and the van der Waals (vdW) interaction is developed. Emphasis has been given on evaluating the vdW coefficients by the Slater-Kirkwood variational method, as both the ions are polarizable. The lattice model calculations have revealed reasonably good agreement with the available experimental data on the phase-transition pressures (Pt=16, 14, 7.5 GPa) and the elastic properties of AlY (Y=N, P, As). The equation of state curves (plotted between V(P)/V(0) and pressure) for both the B3 and B1 structures obtained are in fairly good agreement with the experimental results. The calculated values of the volume collapses [ΔV(P)/V(0)] are also close to their observed data. Further, the variations of the second-order elastic constants with pressure follow a systematic trend that is almost identical to that exhibited by the observed data measured for other semiconducting compounds with B3→B1 structural phase transitions.  相似文献   

19.
We develop a nucleation-based model to explain the formation of the wurtzite phase during the catalyzed growth of freestanding nanowires of zinc blende semiconductors. We show that in vapor-liquid-solid nanowire growth, nucleation generally occurs preferentially at the triple phase line. This entails major differences between zinc blende and wurtzite nuclei. Depending on the pertinent interface energies, wurtzite nucleation is favored at high liquid supersaturation. This explains our systematic observation of zinc blende during early growth of gold-catalyzed GaAs nanowires.  相似文献   

20.
Abstract

The results of thermodynamic calculations in the FeO-MgO-SiO2 (FMS) system show that the elastic properties and density across the 400-km discontinuity might be consistent with a transition zone of isochemical pyrolite composition and do not require chemical stratification. However, phase changes in pyrolite do not explain the 650-km discontinuity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号