首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two-dimensional stagnation-point flow of viscoelastic fluids is studied theoretically assuming that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary-layer theory is used to simplify the equations of motion which are further reduced to a single non-linear third-order ODE using the concept of stream function coupled with the technique of the similarity solution. The equation so obtained was solved using Chebyshev pseudo-spectral collocation-point method. Based on the results obtained in the present work, it is concluded that the well-established but controversial prediction that in stagnation-point flows of viscoelastic fluids the velocity inside the boundary layer may exceed that outside the layer may just be an artifact of the rheological model used in previous studies (namely, the second-grade model). No such peculiarity is predicted to exist for the Maxwell model. For a UCM fluid, a thickening of the boundary layer and a drop in wall skin friction coefficient is predicted to occur the higher the elasticity number. These predictions are in direct contradiction with those reported in the literature for a second-grade fluid.  相似文献   

2.
The flow of an upper-convected Maxwell (UCM) fluid is studied theoretically above a rigid plate moving steadily in an otherwise quiescent fluid. It is assumed that the Reynolds number of the flow is high enough for boundary layer approximation to be valid. Assuming a laminar, two-dimensional flow above the plate, the concept of stream function coupled with the concept of similarity solution is utilized to reduce the governing equations into a single third-order ODE. It is concluded that the fluid's elasticity destroys similarity between velocity profiles; thus an attempt was made to find local similarity solutions. Three different methods will be used to solve the governing equation: (i) the perturbation method, (ii) the fourth-order Runge-Kutta method, and (iii) the finite-difference method. The velocity profiles obtained using the latter two methods are shown to be virtually the same at corresponding Deborah number. The velocity profiles obtained using perturbation method, in addition to being different from those of the other two methods, are dubious in that they imply some degree of reverse flow. The wall skin friction coefficient is predicted to decrease with an increase in the Deborah number for Sakiadis flow of a UCM fluid. This prediction is in direct contradiction with that reported in the literature for a second-grade fluid.  相似文献   

3.
This paper investigates the magnetohydrodynamic(MHD) boundary layer flow of an incompressible upper-convected Maxwell(UCM) fluid over a porous stretching surface.Similarity transformations are used to reduce the governing partial differential equations into a kind of nonlinear ordinary differential equations.The nonlinear problem is solved by using the successive Taylor series linearization method(STSLM).The computations for velocity components are carried out for the emerging parameters.The numerical values of the skin friction coefficient are presented and analyzed for various parameters of interest in the problem.  相似文献   

4.
The unsteady flow of viscoelastic fluid with the fractional derivative Maxwell model (FDMM) in a channel is studied in this note. The exact solutions are obtained for an arbitrary pressure gradient by means of the finite Fourier cosine transform and the Laplace transform. Two special cases of pressure gradient are discussed. Some results given by the classical models with integer-order are included in this note.  相似文献   

5.
A study is made of the unsteady flow engendered in a second-order incompressible, rotating fluid by an infinite porous plate exhibiting non-torsional oscillation of a given frequency. The porous character of the plate and the non-Newtonian effect of the fluid increase the order of the partial differential equation (it increases up to third order). The solution of the initial value problem is obtained by the method of Laplace transform. The effect of material parameters on the flow is given explicitly and several limiting cases are deduced. It is found that a non-Newtonian effect is present in the velocity field for both the unsteady and steady-state cases. Once again for a second-order fluid, it is also found that except for the resonant case the asymptotic steady solution exists for blowing. Furthermore, the structure of the associated boundary layers is determined.  相似文献   

6.
The transient response of an upper-convected Maxwell fluid flow in a circular tube is analysed by variational approach of Kantorovich and the method of finite difference. The solution of the variational method is in agreement with the numerical results by the difference schemes. The results show that the method of Kantorovich is suitable for the study of non-steady flow of non-Newtonian fluids and the effect of elasticity of the fluid has an influence on the non-steady flow. project supported by National Natural Science Foundation of China  相似文献   

7.
The magnetohydrodynamic (MHD) flow and mass transfer of an electrically conducting upper convected Maxwell (UCM) fluid at a porous surface are studied in the presence of a chemically reactive species. The governing nonlinear partial differential equations along with the appropriate boundary conditions are transformed into nonlinear ordinary differential equations and numerically solved by the Keller-box method. The effects of various physical parameters on the flow and mass transfer characteristics are graphically presented and discussed. It is observed that the order of the chemical reaction is to increase the thickness of the diffusion boundary layer. Also, the mass transfer rate strongly depends on the Schmidt number and the reaction rate parameter. Furthermore, available results in the literature are obtained as a special case.  相似文献   

8.
The steady MHD mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional stagnation point with magnetic field has been investigated under the assumption that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary layer theory is used to simplify the equations of motion, induced magnetic field and energy which results in three coupled non-linear ordinary differential equations which are well-posed. These equations have been solved by using finite difference method. The results indicate the reduction in the surface velocity gradient, surface heat transfer and displacement thickness with the increase in the elasticity number. These trends are opposite to those reported in the literature for a second-grade fluid. The surface velocity gradient and heat transfer are enhanced by the magnetic and buoyancy parameters. The surface heat transfer increases with the Prandtl number, but the surface velocity gradient decreases.  相似文献   

9.
A new exact solution corresponding to the flow of a Maxwell fluid over a suddenly moved flat plate is determined. This solution is in all accordance with a previous one and for λ→0 it goes to the well-known solution for Navier-Stokes fluids.  相似文献   

10.
This study is concerned with peristaltic flow of a magnetohydrodynamic (MHD) fluid in an asymmetric channel. Asymmetry in the flow is induced by waves on the channel walls having different amplitudes and phase. A systematic approach based on an expansion of Deborah number is used for the solution series. Analytic expressions have been developed for the stream function, axial velocity and axial pressure gradient. The pressure rise over a wavelength has been addressed through numerical integration. Particular attention has been given to the effects of Hartman number and Deborah number on the pressure rise over a wavelength and the trapping phenomenon. Several limiting solutions of interest are obtained as the special cases of the presented analysis by taking the appropriate parameter(s) to be zero. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In the present work, the effect of MHD flow and heat transfer within a boundary layer flow on an upper-convected Maxwell (UCM) fluid over a stretching sheet is examined. The governing boundary layer equations of motion and heat transfer are non-dimensionalized using suitable similarity variables and the resulting transformed, ordinary differential equations are then solved numerically by shooting technique with fourth order Runge–Kutta method. For a UCM fluid, a thinning of the boundary layer and a drop in wall skin friction coefficient is predicted to occur for higher the elastic number. The objective of the present work is to investigate the effect of Maxwell parameter β, magnetic parameter Mn and Prandtl number Pr on the temperature field above the sheet.  相似文献   

12.
The steady laminar boundary layer flow and heat transfer past a stretching sheet arre considered. Upper‐convected Maxwell (UCM) fluid is treated as a rheological model. The resulting nonlinear differential system is solved by homotopy analysis method (HAM). The influence of melting parameter (M), Prandtl number (Pr), Deborah number (β) and stretching ratio (A = a/c) on the velocity and temperature profiles is thoroughly examined. It is noticed that fields are effected appreciably with the variation of parameters. Furthermore, it is seen that the local Nusselt number is a decreasing function of melting parameter. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
We prove that planar elongational flow of the upper convected Maxwell fluid is linearly stable and analyze the associated spectral problem.  相似文献   

14.
This paper introduces a new model for the Fourier law of heat conduction with the time-fractional order to the generalized Maxwell fluid. The flow is influenced by magnetic field, radiation heat, and heat source. A fractional calculus approach is used to establish the constitutive relationship coupling model of a viscoelastic fluid. We use the Laplace transform and solve ordinary differential equations with a matrix form to obtain the velocity and temperature in the Laplace domain. To obtain solutions from the Laplace space back to the original space, the numerical inversion of the Laplace transform is used. According to the results and graphs, a new theory can be constructed. Comparisons of the associated parameters and the corresponding flow and heat transfer characteristics are presented and analyzed in detail.  相似文献   

15.
The magnetohydrodynamics (MHD) Falkner-Skan flow of the Maxwell fluid is studied. Suitable transform reduces the partial differential equation into a nonlinear three order boundary value problem over a semi-infinite interval. An efficient approach based on the rational Chebyshev collocation method is performed to find the solution to the proposed boundary value problem. The rational Chebyshev collocation method is equipped with the orthogonal rational Chebyshev function which solves the problem on the semi-infinite domain without truncating it to a finite domain. The obtained results are presented through the illustrative graphs and tables which demonstrate the affectivity, stability, and convergence of the rational Chebyshev collocation method. To check the accuracy of the obtained results, a numerical method is applied for solving the problem. The variations of various embedded parameters into the problem are examined.  相似文献   

16.
This study is concerned with the magnetohydrodynamic (MHD) rotating boundary layer flow of a viscous fluid caused by the shrinking surface. Homotopy analysis method (HAM) is employed for the analytic solution. The similarity transformations have been used for reducing the partial differential equations into a system of two coupled ordinary differential equations. The series solution of the obtained system is developed and convergence of the results are explicitly given. The effects of the parameters M, s and λ on the velocity fields are presented graphically and discussed. It is worth mentioning here that for the shrinking surface the stable and convergent solutions are possible only for MHD flows.  相似文献   

17.
Two fundamental flows, namely, the Stokes and Couette flows in a Maxwell fluid are considered. The exact analytic solutions are derived in the presence of the slip condition. The Laplace transform method is employed for the development of such solutions. Limiting cases of no-slip and viscous fluids can be easily recovered from the present analysis. The behaviors of embedded flow parameters are discussed through graphs.  相似文献   

18.
Convective flow and heat transfer in an inclined channel bounded by two rigid plates held at constant different temperatures with one region filled with porous matrix saturated with a viscous fluid and another region with a clear viscous fluid different from the fluid in first region is studied analytically. The coupled nonlinear governing equations are solved using regular perturbation method. It is found that the presence of porous matrix in one of the region reduces the velocity and temperature. Results have been presented for a wide range of governing parameters such as Grashof number, porous parameter, angle of inclination, ratio of heights of the two layers and also the ratio of viscosities.  相似文献   

19.
Although the analytical solution of the starting flow of Maxwell fluid in a pipe has been derived for a long time, the effect of relaxation time λ on start-up time ts of this flow is still not well understood. Especially, there exist a series of jumps on the ts-λ. curve. In this paper we introduce a normalized mechanical energy by mode decomposition and mathematical analogy to describe the start-up process. An improved definition of start-up time is presented based on the normalized mechanical energy. It is proved that the ts-λ. curve contains a series of jumps if λ is larger than a critical value. The exact positions of the jumps are determined and the physical reason of the jumps is discussed.  相似文献   

20.
Stability analysis of double-diffusive convection for viscoelastic fluid with Soret effect in a porous medium is investigated using a modified-Maxwell-Darcy model. We use the linear stability analysis to investigate how the Soret parameter and the relaxation time of viscoelastic fluid effect the onset of convection and the selection of an unstable wavenumber. It is found that the Soret effect is to destabilize the system for oscillatory convection. The relaxation time also enhances the instability of the system. The effects of Soret coefficient and relaxation time on the heat transfer rate in a porous medium are studied using the nonlinear stability analysis, the variation of the Nusselt number with respect to the Rayleigh number is derived for stationary and oscillatory convection modes. Some previous results can be reduced as the special cases of the present paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号