首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The influences of Dzyaloshinskii Moriya (DM) interaction and Kaplan-Shekhtman-Entinwohlman-Aharony (KSEA) interaction on the dimerization of a spin-Peierls system are investigated theoretically by using the Lanczos numerical method. The ground state of the spin-Peierls system is still dimerized phase when both of the DM and the KSEA interactions have the same value with Heisenberg interaction. It is found that the KSEA interaction and uniform DM interaction are always against systemic dimerization, but the staggered DM interaction acts in favour of dimerization. Furthermore, the influences of the DM and the KSEA interactions are also studied in terms of the ground state index rate and the energy gap index rate of the dimerized Heisenberg system. The results show that the DM interaction makes the index rates larger, while the KSEA interaction makes them smaller.  相似文献   

2.
采用Lanczos数值计算方法研究了具有Dzyaloshinskii-Moriya(DM)相互作用和Kaplan-She khtman-Entin-Wohlman-Aharony(KSEA)相互作用的一维spin-Peierls(s-P)系统的基态 行为.计算结果发现KSEA相互作用总是不利于系统二聚化,并且它还影响DM相互作用对系统 二聚化的贡献,甚至可以抵消其作用;在某些特定条件下, KSEA和DM的共同作用可以破坏系 统的二聚化基态而转化为均匀基态. 关键词: DM相互作用 KSEA相互作用 二聚化  相似文献   

3.
蔡卓  陆文彬  刘拥军 《物理学报》2008,57(11):7267-7273
主要研究了具有交错Dzyaloshinskii-Moriya(DM)相互作用的反铁磁Heisenberg链的纠缠.基于 density-matrix renormalization group(DMRG)的数值计算表明,交错DM相互作用消除了系统在外磁场H=2处的二级量子相变,从而量子纠缠反常行为也随之消失;同时纠缠范围的发散也被消除,意味着该模型因子化点的消失.交错DM相互作用导致系统在任意强场下也不会达到铁磁饱和状态,从而保持着自旋纠缠.交错DM相互作用有利于通过外场调控纠缠程度和纠缠范 关键词: Dzyaloshinskii-Moriya相互作用 量子纠缠 量子相变 纠缠范围  相似文献   

4.
刘圣鑫  李莎莎  孔祥木 《物理学报》2011,60(3):30303-030303
研究了Dzyaloshinskii-Moriya(DM)相互作用对混合自旋(1/2,3/2)XY链以及自旋为1的XY链热纠缠的影响.通过计算两粒子之间的纠缠,发现它不仅能够增强纠缠,而且能使两粒子之间的纠缠度达到一稳定值;当温度较高时,要使热纠缠达到稳定值需要更强的这种相互作用.在相同的条件下,自旋s=1的两粒子之间的纠缠要小于混合自旋两粒子之间的纠缠.粒子之间的交换耦合相互作用有助于加强粒子之间的热纠缠,因此可以与DM相互作用一起调节纠缠度.当交换耦合相互作用比 关键词: 量子纠缠 XY 模型')" href="#">XY 模型 negativity Dzyaloshinskii-Moriya相互作用  相似文献   

5.
We investigate the joint effects of phase decoherence,Dzyaloshinskii-Moriya(DM) interaction and inhomogeneity of the external magnetic field(b) on dense coding in a two-qubit anisotropic Heisenberg XY Z spin chain.Analytical expressions are obtained for the dense coding capacity.It is found that valid dense coding is always possible with this model when the system is initially prepared in the maximum entangled state.Moreover,optimal dense coding can be implemented for this initial state as long as the mean spin-spin coupling constant J + of the XY plane is larger than b and the DM interaction despite the intrinsic decoherence.Non-maximal entangled initial states are found to be undesirable for dense coding with this model.  相似文献   

6.
With the introduction of Dzyaloshinskii-Moriya (DM) interaction, dynamics of the remote entanglement in one-dimensional Ising chains is investigated. It is found that the DM interaction can excite the remote entanglement from an initial Néel state. For a given strength of DM interaction, the concurrence between the end spins oscillates and decreases simultaneously with the increase of the chain’s length, and drops to zero at a critical length. For the chains with two and three spins, it is very interesting that the dynamics of the staggered magnetization (or the chiral parameter) can be used to qualitatively estimate the evolution of the remote concurrence between the end spins. At last, we discuss the generation of W state from the Ising chain with DM interactions, and it is obtained that W state can only be prepared in the three-qubit and four-qubit chains with a specific strength of DM interaction.  相似文献   

7.
The Hubbard model extended by both nearest‐neighbour (nn) Coulomb correlation and nearest‐neighbour Heisenberg exchange is solved rigorously for a triangle and tetrahedron. All eigenvalues and eigenvectors are given as functions of the model parameters in a closed analytical form. For fixed electron numbers we found a multitude of level crossings, both in the ground state and in the excited states in dependence on the various model parameters. By coupling an ensemble of clusters to an electron bath we get the cluster gas model or the cluster gas approximation, if an extended array of weak‐interacting clusters is considered. The grand‐canonical potential Ω (μ, T, h) and the electron occupation N (μ, T, h) of the related cluster gases were calculated for arbitrary values (attractive and repulsive) of the three interaction constants. For the cluster gases without the additional interactions we found various steps in N (μ, T = 0, h = 0) higher than one. The reason is the degeneration of ground states differing in their electron occupation by more than one electron. For the triangular cluster gas we have one such degeneration point. For the tetrahedral cluster gas two. As a consequence, we do not find areas with one electron in the μ‐U ground‐state phase diagram of the triangular cluster gas or with one, two and five electrons in the case of the tetrahedral cluster gas. The degeneration point of the triangular cluster gas can not be destroyed by an applied magnetic field. This holds also for the lower degeneration point of the tetrahedral cluster gas. Otherwise, the upper degeneration point breaks down at a critical magnetic field hc. The dependence of hc on U shows a maximum for strong on‐site correlation. The influence of nn‐exchange and nn‐Coulomb correlation on the ground‐state phase diagrams is calculated. Whereas antiferromagnetic nn‐exchange breaks the degeneration points of the tetrahedral cluster gas partially only, a repulsive nn‐Coulomb correlation lifts the underlying degeneracies completely. Otherwise both ferromagnetic nn‐exchange and attractive nn‐Coulomb interaction stabilise the degeneration points. The consequences of the cluster gas results for extended cluster arrays are discussed.  相似文献   

8.
N. UryÛ 《Phase Transitions》2013,86(1-4):133-175
Abstract

Following the Bogoliubov variational principle, the equilibrium and stability equations of the free energy for the two sublattice antiferromagnetic system with inter- and intrasublattice exchange interactions and with an external magnetic field are investigated. For the Ising spin system with uniaxial anisotropy, the phase diagrams have been calculated for various values of anisotropy constant d and the ratio of intra- to intersublattice interaction constants γ. It is shown that first-order, as well as second-order transitions, occur for γ > 0, whereas only a second-order transition occurs for γ ≦ 0, irrespective of the sign of d. Furthermore, similar calculations are extended for the anisotropic Heisenberg spin system and quite interesting phase diagrams have been obtained. Next, the effects of the anisotropic exchange interactions on the magnetic ordered states and the magnetizations of the singlet ground state system of spin one and with a uniaxial anisotropy term are investigated in the vicinity of the level crossing field H ? D/gμ B . A field-induced ordered state without the transverse component of magnetization is shown to appear in a certain range of magnetic field as the spin dimensionality decreases. It has also turned out that the phase transition between this ordered state and the canted antiferromagnetic state ordinarily found for the isotropic singlet ground state system is of first order. Lastly, the stable spin configurations at a temperature of absolute zero for a two-sublattice uniaxial antiferromagnet under an external magnetic field of arbitrary direction are studied. In particular, the effects of a single ionic anisotropy D-term and anisotropy in the exchange interactions on the magnetic phases are investigated. The antiferromagnetic state has turned out to appear only for the external magnetic field along the easy axis of sublattice magnetization, and makes a first-order phase transition to the canted-spin state or the ferromagnetic state. For other field directions, no antiferromagnetic state appears and only a second-order phase transition between the canted-spin and the ferromagnetic states occurs. The critical field as a function of external field direction has been calculated for several D-values.  相似文献   

9.
The thermal entanglement of a two-qubit anisotropic Heisenberg XXZ chain with Dzyaloshinskii-Moriya (DM) interaction in an inhomogeneous magnetic field was studied in detail. The effects of the DM parameter, external magnetic field (B), a parameter b which controls the inhomogeneity of B and the bilinear interaction parameters Jx = Jy ≠ Jz (the anisotropic case) on the concurrence (C) was formulated and studied in detail. The behaviors of the concurrences for the cases between (J = Jz = 1) and (J = -1,Jz = 1) and, (J = Jz = -1) and (J = 1,Jz = -1) at the ground state and at the thermal equilibrium are exactly the same. It was found that for the antiferromagnetic (AFM) case the entanglements persist to higher temperatures in comparison with the ferromagnetic (FM) case. In addition, the AFM case presents a special point at which the nonzero concurrences are all equal at some special temperatures. The further properties will be given in the text.  相似文献   

10.
A quantum spin model with competing ferro- and antiferromagnetic exchange interactions was studied. The model described a special class of quasi-one-dimensional cuprates. The influence of anisotropy of exchange interactions on the properties of the model was analyzed. It was shown that, under certain conditions, the ferromagnetic state was the ground state, and the spectrum of excitations was characterized by the presence of bound magnon states. The results are used to analyze the magnetic properties of the Li2CuO2 quasi-one-dimensional cuprate.  相似文献   

11.
The role of spin-orbit interaction arises from the Dzyaloshinskii-Moriya anisotropic antisymmetric interaction on the entanglement transfer via an antiferromagnetic XXZ Heisenberg chain is investigated. From symmetrical point of view the XXZ Hamiltonian with Dzyaloshinskii-Moriya interaction can be replaced by a modified XXZ Hamiltonian which is defined by a new exchange coupling constant and rotated Pauli operators. The modified coupling constant and the angle of rotations depend on the strength of Dzyaloshinskii-Moriya interaction. In this paper we study the dynamical behavior of the entanglement propagation through a system which is consist of a pair of maximally entangled spins coupled to one end of the chain. The calculations are performed for the ground state and the thermal state of the chain separately. In both cases the presence of this anisotropic interaction make our channel more efficient. We show for large values of the strength of this interaction a large family of XXZ chains becomes efficient quantum channels for whole values of anisotropy parameter in the region −2 ≤ Δ ≤ 2.  相似文献   

12.
Corrigendum     
Theoretical calculations of g-tensor components for the spin–orbit quartet, which arises as the ground state in three-coordinate d9 complexes and low-spin d7 complexes of D3h symmetry, have been made on the assumption that the spin–orbit interaction is commensurable with the electron-vibrational interaction. The calculations were carried out within the framework of crystal field theory using representations of the hole formalism. The analytical expressions for g-tensor components were obtained limited to first-order terms. It was shown that the account of the electron–vibrational interaction in the excited quartet only provides three-axial anisotropy for the g-tensor. It was shown that the g-tensor rotates in the plane of the three-coordinate structure with consensual motion of the atoms. The resulting expressions for the g-factor components are in good agreement with experimental data. Being universal for a wide range of contributions of the vibronic and spin–orbit interactions, these expressions essentially fill the gap in studying structures of coordination compounds.  相似文献   

13.
This paper mainly investigates the effects of different Dzyaloshinskii-Moriya (DM) anisotropic antisymmetric interactions on thermal entanglement and teleportation of one-qubit state in both the standard and non-standard protocols as well as the partial teleportation of an entangled state via a two-qubit Heisenberg XXZ spin chain in the presence of external magnetic fields. The dependency of the thermal entanglement and average fidelity on various system parameters is analyzed. The interplay of the different parameters on the teleportation is discussed. The DM interaction is found to be effective for the thermal entanglement in the spin chain both with and without external magnetic fields. However, it turned out to be destructive for the teleportation in the standard protocol, whereas is found constructive for single qubit teleportation when the spin chain with the z-direction parameters is used as the channel in the non-standard protocol. Moreover, the results show that, for teleporting one-qubit state, the antiferromagnetic (AFM) chain is the only qualified candidate in the standard protocol, while both the AFM and ferromagnetic (FM) chains with the parameters along the z-axis are all suitable in the non-standard protocol when the parameters are chosen appropriately. For the partial teleportation of entanglement, both the AFM and FM chains are eligible as long as the appropriate combinations of parameters are chosen. In addition, the comparison of the effects of the same, fixed x- and z-component parameters of the DM interaction (Dx and Dz) on teleportation is presented.  相似文献   

14.
We present a comparative study of magnetism in UCoAl and UNi2/3Rh1/3Al single crystals. UCoAl is commonly believed to be an itinerant 5 f-electron metamagnet with B c < 1 T with uniaxial anisotropy. Pressure and alloying effects on the ground state point to competing ferromagnetic and antiferromagnetic interactions to be responsible for the non-magnetic ground state. UNi2/3Rh1/3Al is a solid solution between an antiferromagnet (UNiAl) and a ferromagnet (URhAl) and may have a similar underlying microscopic mechanism of the non-magnetic ground state. Possible analogies between the two compounds are discussed.  相似文献   

15.
We propose a direct method of detection of the nuclear anapole moment. It is based on the existence of a linear Stark shift for alkali atoms in their ground state perturbed by a quadrupolar interaction of uniaxial symmetry around a direction and a magnetic field. This shift is characterized by the T-even pseudoscalar ( . )(∧ . )/B 2. It involves on the one hand the anisotropy of the hyperfine interaction induced by the quadrupolar interaction and, on the other, the static electric dipole moment arising from electroweak interactions inside the nucleus. The case of ground state Cs atoms trapped in a uniaxial (hcp) phase of solid 4He is examined. From an explicit evaluation of both the hyperfine structure anisotropy and the static dipole deduced from recent empirical data about the Cs nuclear anapole moment, we predict the Stark shift. It is three times the experimental upper bound to be set on the T-odd Stark shift of free Cs atoms in order to improve the present limit on the electron EDM. Received 20 December 2000  相似文献   

16.
We study the ground-state and thermal entanglement in the mixed-spin (S,s)=(1,1/2) Heisenberg chain with single-ion anisotropy D using exact diagonalization of small clusters. In this system, a quantum phase transition is revealed to occur at the value D=0, which is the bifurcation point for the global ground state; that is, when the single-ion anisotropy energy is positive, the ground state is unique, whereas when it is negative, the ground state becomes doubly degenerate and the system has the ferrimagnetic long-range order. Using the negativity as a measure of entanglement, we find that a pronounced dip in this quantity, taking place just at the bifurcation point, serves to signal the quantum phase transition. Moreover, we show that the single-ion anisotropy helps to improve the characteristic temperatures above which the quantum behavior disappears.  相似文献   

17.
This study explores the thermal quantum-memory-assisted entropic uncertainty relation (QM-EUR) and entanglement in a general two-qubit XYZ-Heisenberg spin chain model in the presence of the Dzyaloshinskii–Moriya (DM) interaction. The characterization of y-component DM and spin–spin interactions are particularly focused. It is found that the DM and spin–spin interaction strengths highly regulate the flow behavior and the initial final levels of QM-EUR and entanglement. In comparison, the spin–spin interaction strength in the z-direction remains useful in both ferromagnetic and anti-ferromagnetic regimes for entropic uncertainty suppression and entanglement generation. Additionally, the negative and the positive y - $y\text{-}$ directed DM values can usefully turn classical states into resourceful quantum states. The dynamics of thermal QM-EUR and entanglement-of-formation have symmetric behaviors only with respect to y-component DM and z-component spin–spin interaction. Finally, different critical points of temperature, y - $y\text{-}$ component DM as well as spin–spin interaction are encountered, which should be opted to preserve quantum correlations and degrade uncertainty.  相似文献   

18.
张剑  邵彬  邹健  李前树 《中国物理 B》2011,20(10):100307-100307
We study the state transfer of Bell states in a general XY spin chain using the Dzyaloshinsky-Moriya interaction. Two symmetries of fidelity with the anisotropy parameter are found. The maximum fidelity is shown to be significantly enhanced in cases of an odd number of sites. Enhancement of fidelity on a singlet state is greater than that on the other Bell states in such cases.  相似文献   

19.
杜龙  侯净敏  丁伽焱  张文新  田志  陈婷婷 《中国物理 B》2011,20(2):20306-020306
This paper investigates the entanglement in an XX-type spin chain with Dzyaloshinskii-Moriya interaction under an external magnetic field.The von Neumann entropy of entanglement between two blocks for the ground state of the system is evaluated.It analyses and discusses the scaling behaviour of the entanglement entropy.  相似文献   

20.
The ppppη and npnpη reactions at energies near the η production threshold are studied in a non-relativistic one boson exchange model, where the (1535 MeV) S11 resonance is excited through the exchange of π, η, ? and ω mesons and subsequently decays into an ηN pair. Energy integrated cross sections and energy spectra of the out going η's are reported. Providing NN and ηN final state interactions are taken into account coherently, the model reproduces both the scale and energy dependence of the cross section for the ppppη reactions up to 100 MeV. Final state interaction corrections due to the nucleon-nucleon and meson-nucleon forces influence strongly the scale and shape of the cross sections. The shape of the energy spectra of the outgoing η's provides a clear signature of the ηN force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号