首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
An efficient and reliable electrochemical generator of hypervalent iodine reagents has been developed. In the anodic oxidation of iodoarenes to hypervalent iodine reagents under flow conditions, the use of electricity replaces hazardous and costly chemical oxidants. Unstable hypervalent iodine reagents can be prepared easily and coupled with different substrates to achieve oxidative transformations in high yields. The unstable, electrochemically generated reagents can also easily be transformed into classic bench‐stable hypervalent iodine reagents through ligand exchange. The combination of electrochemical and flow‐chemistry advantages largely improves the ecological footprint of the overall process compared to conventional approaches.  相似文献   

2.
The organic chemistry of hypervalent organoiodine compounds has been an area of unprecedented development. This surge in interest in the use of hypervalent iodine compounds has mainly been owing to their highly selective oxidizing properties, environmentally benign character and commercial availability. Hypervalent iodine reagents have also been used as an alternative to toxic heavy metals, owing to their low toxicity and ease of handling. Hypervalent organoiodine(III) reagents are versatile oxidants that have been successfully employed to extend the scope of selective oxidative transformations of complex organic molecules in synthetic chemistry. This Focus Review concerns the tandem in situ generation and 1,5‐electrocyclization of N‐heteroaryl nitrilimines into fused triazoles. We describe the importance of recently developed hypervalent‐organoiodine(III)‐catalyzed oxidative cyclization reactions, building towards the conclusion that hypervalent iodine chemistry is a promising frontier for oxidative cyclization, in particular of hydrazones, for the synthesis of fused triazoles.  相似文献   

3.
Hypervalent iodine chemistry is now a well‐established area of organic chemistry. Novel hypervalent iodine reagents have been introduced in many different transformations owing to their mild reaction conditions and environmentally friendly nature. Recently, these reagents have received particular attention because of their applications in catalysis. Numerous hypervalent iodine‐catalyzed oxidative functionalizations such as oxidations of various alcohols and phenols, α‐functionalizations of carbonyl compounds, cyclizations, and rearrangements have been developed successfully. In these catalytic reactions stoichiometric oxidants such as mCPBA or oxone play a crucial role to generate the iodine(III) or iodine(V) species in situ. In this Focus Review, recent developments of hypervalent iodine‐catalyzed reactions are described including some asymmetric variants. Catalytic reactions using recyclable hypervalent iodine catalysts are also covered.  相似文献   

4.
A simple and convenient protocol has been developed for ipso‐nitration of arylboronic acid catalysed by molecular iodine at room temperature, using zirconium oxynitrate as the nitrating species. The protocol is applicable to electronically diverse aryl‐ and heteroarylboronic acid moieties under mild reaction conditions with good to excellent isolated yields. Furthermore, a theoretical investigation has been performed for the same reaction, and reaction profiles are modelled using modern density functional theory (DFT). DFT‐based results support the experimentally observed results.  相似文献   

5.
An efficient thioamination of alkenes mediated by iodine(III) reagents is described. The use of different sulfur nucleophiles allows the flexible synthesis of 1,2‐aminothiols from alkenes. By employing chiral iodine(III) reagents, a stereoselective version of the thioamination protocol has also been developed.  相似文献   

6.
Herein, unprecedented rhenium‐catalyzed decarboxylative oxytri‐/difluoromethylation and Heck‐type trifluoromethylation of styrenes have been developed by using hypervalent iodine(III) reagents derived from cheap, stable, and easy‐handling fluorinated carboxylic acids. Mechanistic studies revealed a radical decarboxylative trifluoromethylation pathway occurring in these reactions.  相似文献   

7.
A new and efficient method for the synthesis of unsymmetrical 1,3‐butadiynes by gold‐catalyzed C(sp)–C(sp) cross‐coupling of terminal alkynes with alkynyl hypervalent iodine(III) reagents has been developed. The reaction features high selectivity and efficiency, mild reaction conditions, wide substrate scope, and functional‐group compatibility, and is a highly attractive complement to existing methods. Mechanistic studies reveal that formation of a phenanthrolinyl‐ligated gold(I) complex is crucial for the efficiency and selectivity of the target transformation.  相似文献   

8.
The radical nature of iron‐catalyzed cross‐coupling between Grignard reagents and alkyl halides has been studied by using a combination of competitive kinetic experiments and DFT calculations. In contrast to the corresponding coupling with aryl halides, which commences through a classical two‐electron oxidative addition/reductive elimination sequence, the presented data suggest that alkyl halides react through an atom‐transfer‐initiated radical pathway. Furthermore, a general iodine‐based quenching methodology was developed to enable the determination of highly accurate concentrations of Grignard reagents, a capability that facilitates and increases the information output of kinetic investigations based on these substrates.  相似文献   

9.
A protocol for the anti‐Markovnikov hydrofunctionalization of alkenes has been developed by the use of a benzyl group as a traceless redox‐active hydrogen donor. Under copper catalysis and in the presence of CF3‐ or N3‐containing hypervalent iodine reagents, a series of homoallylic alcohol derivatives were hydrofunctionalized regioselectivity. A similar principle was also applied to the hydrofunctionalization of alkenols.  相似文献   

10.
It is difficult to imagine organic chemistry without organo‐halogen compounds and the molecular halogens needed for their preparation. The halogens have very different reactivity, with iodine usually requiring some form of activation, while others are reactive and hazardous chemicals. To avoid their use, various modified reagents have been discovered (N‐bromo‐ and N‐chlorosuccinimide, Selectfluor…?), but halogens are used to prepare these reagents and when they are used the atom economy is poor. A better approach, which is based on biomimetric research on oxidative halogenation in nature, consists of generating the halogenating reagent in situ under acidic conditions from a halide salt. The result of such a reaction has been halogenation with 100 % halogen atom economy. Suitable oxidants for the oxidation of halides are hydrogen peroxide and oxygen.  相似文献   

11.
The field of hypervalent iodine chemistry has been prevalent since 1886. Its journey from obscurity to coming into the limelight has witnessed many effective transformations which have benefited the synthetic community at large. The reactivity of primary amines with hypervalent iodine reagents causes difficulty in synthetic outcome or not feasible due to high exothermicity of amine iodine which is an acid base reaction. This minireview highlights the worthwhile reactivity of hypervalent iodine reagents with aromatic and aliphatic primary amines. Some recent literature has been discussed to make a clear understanding on how such high reactivity of primary amine is controlled by introducing modulation in either substrate or reaction conditions, most of which are carried out under ambient reaction conditions.  相似文献   

12.
In this article, an efficient, environmentally benign, one‐pot and simple synthesis of 2‐aryl/heteroarylbenzothiazoles by the reaction of 2‐aminothiophenol and aryl/heteroaryl aldehydes mediated by hypervalent iodine (III) reagents under solvent‐free condition at room temperature is demonstrated. All the reactions were carried out by grinding the reactants (2‐aminothiophenol and aryl/heteroaryl aldehydes) with hypervalent iodine (III) reagents in a mortar with pestle. Phenyliodine bistrifluoroacetate act as an efficient oxidizing reagent in comparison to iodobenzene diacetate in term of reaction time but yields are comparative. The advantages of this protocol are the one‐step procedure, mild reaction conditions, high yields of the products, and no side reactions.  相似文献   

13.
Hypervalent iodine(III) compounds containing iodine–nitrogen bonds are very attractive amination reagents in organic synthesis. Heteroaromatic (aryl)iodonium imides containing a iodine–nitrogen bond and a hypervalent iodine(III) atom were prepared from heteroarenes, bis(sulfon)imides and (diacetoxyiodo)arenes under mild conditions. These compounds were stable under air and in organic solvents, and could be easily purified by precipitation. X‐ray crystal structure analysis indicated that the structure of N‐pivaloyl indolyl(phenyl)iodonium bis(tosyl)imides and N‐pivaloyl indolyl(2‐butoxyphenyl)iodonium bis(tosyl)imides was a dimer with a T‐shaped geometry at the iodine atom linked to an indole group and a bis(tosyl)imide by a monomer unit. Moreover, the use of substituted iodoarenes facilitated the purification of some of the heteroaromatic (aryl)iodonium imides.  相似文献   

14.
Building on earlier results, a direct metal‐free α‐ arylation of substituted cyclic 1,3‐diones using ArI(O2CCF3)2 reagents has been developed; unlike other arylative approaches, the arylated products retain the iodine substituent ortho to the newly formed C?C bond. The mechanism is explored by using DFT calculations, which show a vanishingly small activation barrier for the C?C bond‐forming step. In fact, taking advantage of an efficient in situ hypervalent activation, the iodoarenes are shown to undergo a cross‐ dehydrogenative C?C coupling at the C?H ortho to the iodine. When Oxone is used as terminal oxidant, the process is found to benefit from a rapid initial formation of the hypervalent ArI(OR)2 species and the sulfate‐accelerated final coupling with a ketone. This method complements the ipso selectivity obtained in the metal‐catalyzed α‐arylation of carbonyl compounds.  相似文献   

15.
The direct electrophilic trifluoromethylation of silyl ketene imines (SKIs) with hypervalent iodine reagents leads to the formation of quaternary α‐trifluoromethyl nitriles in good yields. This new reaction has been carried out with a variety of substituted SKIs under solvent‐free conditions using a vanadium(IV) catalyst (5 mol %). The corresponding products may be transformed into useful organofluorine building blocks.  相似文献   

16.
Well‐defined hypervalent iodine(III) reagents incorporating transferable sulfoximidoyl groups were obtained through ligand exchange reactions of methoxy(tosyloxy)iodobenzene (MTIB) with NH sulfoximines in good to excellent yields. The solid‐state structure of a representative product was characterized by X‐ray crystallography. Utilizing these reagents in synthesis provides a new, transition‐metal‐free approach towards N‐alkynylated sulfoximines.  相似文献   

17.
Iodine(III) reagents are used in catalytic one‐pot reactions, first as both oxidants and substrates, then as cross‐coupling partners, to afford chiral polyfunctionalized amines. The strategy relies on an initial catalytic auto C(sp3)?H amination of the iodine(III) oxidant, which delivers an amine‐derived iodine(I) product that is subsequently used in palladium‐catalyzed cross‐couplings to afford a variety of useful building blocks with high yields and excellent stereoselectivities. This study demonstrates the concept of self‐amination of the hypervalent iodine reagents, which increases the value of the aryl moiety.  相似文献   

18.
Hypervalent iodine(V) reagents, such as Dess–Martin periodinane (DMP) and 2‐iodoxybenzoic acid (IBX), are broadly useful oxidants in chemical synthesis. Development of strategies to generate these reagents from dioxygen (O2) would immediately enable use of O2 as a terminal oxidant in a broad array of substrate oxidation reactions. Recently we disclosed the aerobic synthesis of I(III) reagents by intercepting reactive oxidants generated during aldehyde autoxidation. In this work, aerobic oxidation of iodobenzenes is coupled with disproportionation of the initially generated I(III) compounds to generate I(V) reagents. The aerobically generated I(V) reagents exhibit substrate oxidation chemistry analogous to that of DMP. The developed aerobic generation of I(V) has enabled the first application of I(V) intermediates in aerobic oxidation catalysis.  相似文献   

19.
Hypervalent iodine compounds are privileged reagents in organic synthesis because of their exceptional reactivity. Among these compounds, cyclic derivatives stand apart because of their enhanced stability. They have been widely used as oxidants, but their potential for functional‐group transfer has only begun to be investigated recently. The use of benziodoxol(on)es for trifluoromethylation (Togni's reagents) is already widely recognized, but other transformations have also attracted strong interest recently. In this Review, the development in the area since 2011 will be presented. After a short summary of synthetic methods to prepare benziodoxol(on)e reagents, their use to construct carbon–heteroatom and carbon–carbon bonds will be presented. In particular, the introduction of alkynes by using ethynylbenziodoxol(on)e (EBX) reagents has been highly successful. Breakthroughs in the introduction of alkoxy, azido, difluoromethyl, and cyano groups will also be described.  相似文献   

20.
The first direct alkynylation of 2‐vinylphenols was developed. The rationally optimized hypervalent iodine reagent TIPS‐EBX* in combination with [(Cp*RhCl2)2] as a C? H‐activating transition metal catalyst enables the construction of a variety of highly substituted 1,3‐enynes in high yields of up to 98 %. This novel C? H activation method shows excellent chemoselectivity and exclusive (Z)‐stereoselectivity, and it is also remarkably mild and tolerates a variety of functional groups. Furthermore, synthetic modifications of the resulting 1,3‐enynes were demonstrated. To our knowledge, this is the first example for an OH‐directed C? H alkynylation with hypervalent iodine reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号