首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a photonic-crystal fiber based plasmonic biosensor in which gold is used as the plasmonic material is proposed. The introduced sensor is designed in such a way that the plasmonic metal layer and the sensing layer are placed outside the fiber structure so that the fabrication process and the numerical analysis has become comparatively much easier. The proposed plasmonic biosensor properties are calculated numerically using the finite element method. Amongst the parameters affecting the performance of the biosensor are the thickness of the gold layer and the diameter of the central cavity. By applying the wavelength interrogation method, the maximum sensitivity and the resolution of the proposed biosensor are computed as 5723.5 nm/RIU and 1.74?×?10?5 RIU, respectively. The proposed structure with the above properties is suitable for detecting biological molecules, organic chemicals and analytes.  相似文献   

2.
The novel offset core photonic crystal fiber filter is designed and analyzed, whose dispersion relations and polarization characteristics are simulated by finite element method using COMSOL Multiphysics software. The filter structure is optimized by changing diameter of air holes and the thickness of Au layer. Simulation results show that loss of y-polarized mode reaches 657 dB/cm while the loss of x-polarized mode is very low at the communication window (\(1.55\,\upmu \hbox {m}\)). The crosstalk of filter reaches 56.2 dB at \(1.55\,\upmu \hbox {m}\) wavelength and the 20 dB band width of the filter is 100 nm when the propagation distance is \(1\,\upmu \hbox {m}\). Not only the filter shows good performance but also the proposed photonic crystal fiber can be applied to other fields.  相似文献   

3.
We propose a novel kind of wide-range refractive index optical sensor based on photonic crystal fiber(PCF) covered with nano-ring gold film.The refractive index sensing performance of the PCF sensor is analyzed and simulated by the finite element method(FEM).The refractive index liquid is infiltrated into the cladding air hole of the PCF.By comparing the sensing performance of two kinds of photonic crystal fiber structures, a wide range and high sensitivity structure is optimized.The surface plasmon resonance(SPR) excitation material is chose as gold, and large gold nanorings are embedded around the first cladding air hole of the PCF.The higher order surface plasmon modes are generated in this designed optical fiber structure.The resonance coupling between the fundamental mode and the 5 th order surface plasmon polariton(SPP)modes is excited when the phase matching condition is matched.Therefore, the 3 rd loss peaks appear obvious red-shift with the increase of the analyte refractive index, which shows a remarkable polynomial fitting law.The fitnesses of two structures are 0.99 and 0.98, respectively.When the range of refractive indices is from 1.40 to 1.43, the two kinds of sensors have high linear sensitivities of 1604 nm/RIU and 3978 nm/RIU, respectively.  相似文献   

4.
SPR生物传感器快速检测大肠杆菌O157:H7的研究   总被引:2,自引:0,他引:2  
Si CY  Ye ZZ  Wang YX  Gai L  Wang JP  Ying YB 《光谱学与光谱分析》2011,31(10):2598-2601
建立了一种基于表面等离子体共振(surface plasmon resonance,SPR)原理的生物传感器方法,实现了快速检测大肠杆菌O157:H7.研究选用BIACORE 3000系统及葡聚糖修饰的CM5芯片,先用EDC/NHS将芯片活化,然后抗体直接通过酰胺键固定在金表面,再用乙醇胺封闭,这样处理之后的芯片就可用于检测大肠杆菌O157:H7.利用NaOH溶液对芯片再生,实现对多个不同浓度样品检测,采用时间对响应单位(RU)记录数据.该法检测大肠杆菌O157:H7的检测限为3×105 CFU·mL-1,RU变化值和大肠杆菌O157:H7的浓度在一定范围内相关性良好,相关系数达到0.99.检测时间短,一个样品仅需5~7 min,再生效果好,芯片可重复使用50次以上.可快速、在线、稳定地检测大肠杆菌O157:H7,有望成为一种在线检测食品致病性微生物的有力手段.  相似文献   

5.
We propose a design for a high sensitivity plasmon resonance (SPR) sensor based on photonic crystal fiber (PCF) and analyze the sensor using finite element software (FEM). By introducing a D-shape hole instead of a circular hole in the first ring of the photonic crystal fiber, which increases the coupling effect and proficient infiltration of the sensing, resulting in enhance the performance of the sensor due to the flat structure of the D-shape hole and the homogeneous metal coating facility. We study the influence of the parameters of the D-shape hole on the sensing performance and analyze the sensor performance based on the wavelength and amplitude sensitivity. The results show that the proposed sensor is capable of detecting analyte refractive index ranging from 1.30 to 1.42, and the maximum sensitivities of 14,600 nm/RIU and 1475 RIU?1 can be achieved in this sensing range, respectively. The largest sensor resolutions for wavelength and amplitude sensing are 6.84×10?6 and 6.78×10?6 RIU, and the maximum figure of merits (FOM) of the proposed sensor being 618.  相似文献   

6.
施伟华  尤承杰  吴静 《物理学报》2015,64(22):224221-224221
利用光子晶体光纤结构的灵活性和性能的优越性, 设计了一种基于D形光子晶体光纤的折射率和温度传感器. 在D形光子晶体光纤表面抛磨并镀上金纳米薄膜, 作为表面等离子体共振传感通道用来测量液体折射率; 在包层的一个空气孔中填充温敏液体甲苯, 作为定向耦合通道实现对温度的测量. 进一步的数值计算发现, 基于定向耦合效应的温度传感和基于表面等离子体共振的折射率传感相互独立, D形光子晶体光纤同时进行折射率和温度传感检测. 在各向异性的完美匹配层边界条件下利用全矢量有限元法对该传感器特性进行了数值研究, 发现D形光子晶体光纤的空气孔直径决定了定向耦合吸收峰的中心波长和温度传感的灵敏度, 金薄膜的厚度和D形结构的抛磨深度仅影响表面等离子体共振峰的相对强度. 结果表明: 该传感器在-10–80 ℃的温度范围内具有11.6 nm/℃的温度灵敏度, 在1.34–1.44折射率范围内折射率灵敏度最高可达26000 nm/RIU.  相似文献   

7.
提出了利用光子晶体光纤空气孔塌缩技术制作光子晶体光纤表面等离子体共振传感器,构建了空气孔完全塌缩的光子晶体光纤表面等离子体共振传感器模型,并模拟计算了其中的表面等离子体共振效应。制作了全光纤化的波长检测型的光子晶体光纤表面等离子体共振传感器,利用超连续谱光源进行了相关实验。实验结果表明:以空气为待测环境介质时,对应的共振波长为465 nm,与理论计算相符合。  相似文献   

8.
 提出了利用光子晶体光纤空气孔塌缩技术制作光子晶体光纤表面等离子体共振传感器,构建了空气孔完全塌缩的光子晶体光纤表面等离子体共振传感器模型,并模拟计算了其中的表面等离子体共振效应。制作了全光纤化的波长检测型的光子晶体光纤表面等离子体共振传感器,利用超连续谱光源进行了相关实验。实验结果表明:以空气为待测环境介质时,对应的共振波长为465 nm,与理论计算相符合。  相似文献   

9.
张瑾  常敏  陈楠  刘学静  章曦  杜嘉  丁鑫 《光学技术》2022,48(1):109-115
现有报道的PCF-SPR折射率传感器的检测范围普遍较窄,不能实现低折射率的检测,且工作波段多数集中在可见光或通信波段,这限制了传感器的应用范围.鉴于此,提出了一种基于D型双芯PCF结构的SPR传感器,使用氧化铟锡作为等离子体材料沉积在D型PCF抛光表面,并对该传感器的理论模型进行了分析,包括金属参数对传感性能的影响,P...  相似文献   

10.
A novel plasmonic polarization filter based on the diamond-shape photonic crystal fiber(PCF) is proposed. The resonant coupling characteristics of the PCF polarization filter are investigated by the full-vector finite-element method. By optimizing the geometric parameters of the PCF, when the fiber length is 5 mm, the polarization filter has a bandwidth of 990 nm and an extinction ratio(ER) of lower than -20 dB. Moreover, a single wavelength polarization filter can also be achieved, along with an ER of -279.78 dB at wavelength 1.55 μm. It is believed that the proposed PCF polarization filter will be very useful in laser and optical communication systems.  相似文献   

11.
An electrochemical DNA biosensor (E-DNA biosensor) was fabricated by avidin-biotin conjugation of a biotinylated probe DNA, 5′-biotin-ATG AGT CTT CTA ACC GAG GTC GAA-3′, and an avidin-modified glassy carbon electrode (GCE) to detect the influenza virus (type A). An avidin-modified GCE was prepared by the reaction of avidin and a carboxylic acid-modified GCE, which was synthesized by the electrochemical reduction of 4-carboxyphenyl diazonium salt. The current value of the E-DNA biosensor was evaluated after hybridization of the probe DNA and target DNA using cyclic voltammetry (CV). The current value decreased after the hybridization of the probe DNA and target DNA. The DNA that was used follows: complementary target DNA, 5′-TTC GAC CTC GGT TAG AAG ACT CAT-3′ and two-base mismatched DNA, 5′-TTC GAC AGC GGT TAT AAG ACT CAT-3′.  相似文献   

12.
基于表面等离子体共振的微结构光纤传感器具有高灵敏、免标记和实时监控等优点.如今,由于此类传感器广泛应用于食品安全控制、环境检测、生物分子分析物检测等诸多领域而受到大量研究.然而,目前所报道的绝大多数此类传感器只能应用于可见光或近中红外传感.因此,对可应用于中红外传感的表面等离子体共振微结构光纤传感器的研究是一项极具挑战...  相似文献   

13.
A photonic crystal fiber sensor based on differential optical absorption spectroscopy for mixed gas detection is presented. In such sensor, hollow core photonic crystal fiber is utilized as gas cell and the feasibility for gas detection is verified by experiment. The components concentration of mixed gas NH3 and C2H2 are measured and the detection sensitivity is 143 ppmv.  相似文献   

14.
设计并分析了一种高灵敏度表面等离子体共振(SPR)传感器,该传感器由偏芯D型结构的十重光子准晶光纤(PQF)组成,并局部涂覆氧化铟锡(ITO).偏芯D型结构可以使液体分析更加方便,增强了纤芯模与SPP模之间的耦合,提高了传感灵敏度.采用有限元法对传感器的特性进行研究.结果表明,传感器的波长灵敏度随折射率(RIs)的增大...  相似文献   

15.
We present a new, sensitive, few mode fiber (FMF) surface plasmon resonance (SPR) biosensor with a sandwich assay for the detection of PSA. The side-polished FMF biosensor does not need a polarizer and a thin high-index overlayer. The optical sensitivity of the SPR sensor was determined as 2.5 × 10−6 RIU. In the SPR PSA sensor, the SPR signals were amplified by a factor of 6 in average over no secondary antibody, using the sandwich assay. The proposed FMF SPR biosensor has great potential for real-time analysis of immune reaction between biomolecules and the advantages of high-sensitivity and label-free detection.  相似文献   

16.
The mechanism of neural activity detection using the surface plasmon resonance (SPR) phenomenon was theoretically explored in this paper. Investigating the mechanism of SPR neural recordings has been difficult due to the complex relationship between different physiological and physical processes such as excitation of a nerve fiber and coherent charge fluctuations on the metal surface. This paper examines how these different processes may be connected by introducing a set of compartmental theoretical models that deal with the molecular scale phenomena; Poisson-Boltzmann (PB) equation, which was used to describe the ion concentration change under the time varying electrostatic potential, Drude-Lorentz electron model, which was used to describe electron dynamics under the time varying external forces, and a Fresnel's three-layered model, which expresses the reflectivity of the SPR system in terms of the dielectric constants. Each physical theoretical model was numerically analyzed using the finite element method (FEM) formulated for the PB equation and the Green's method formulated for the Drude-Lorentz electron equation. The model predicts that the ionic thermal force originating from the opening of the K+ ion channel is fundamental for modifying the dipole moment of the gold's free electron; thus, the reflectivity is changed in the SPR system. The discussion was done also on important attributes of the SPR signal such as biphasic fluctuation and the electrical noise-free characteristics.  相似文献   

17.
We present and numerically characterize a dual channel surface plasmon resonance (SPR) sensor based on a D-shaped fiber with a central hole for silicone oil detections. The proposed design incorporates two metalized channels to facilitate the simultaneous detection of one group of silicone oils, which can consist of two different species. It has been demonstrated that the p-polarized input light can induce two peaks among surface plasmon resonance places, which come from the coupling between the core-guided mode and the fundamental surface plasmon polariton (SPP) modes at the D-shaped surface and around the central hole surface. However, the s-polarized input light can only induce one peak among surface plasmon resonance places, which comes from the coupling between the core-guided mode and the fundamental SPP mode around the central hole surface. The simulation results show that the characteristic responses of two channels independently correspond to the refractive index variations in the silicone oils with which they are in contact. A maximum sensitivity of 3500 nm/RIU (refractive index unit) and 4400 nm/RIU are achieved for channel A and B, respectively. This kind of sensor structure and polarization related demodulation method is promising in the simultaneous multi-analytes sensing applications in the future.  相似文献   

18.
Jian-Fei Liao 《中国物理 B》2022,31(6):60701-060701
A new design of surface plasmon resonance (SPR) sensor employing circular-lattice holey fiber to achieve high-sensitivity detection is proposed. The sensing performance of the proposed sensor is numerically investigated and the results indicate that our proposed SPR sensor can be applied to the near-mid infrared detection. Moreover, the maximum wavelength sensitivity of our proposed sensor can reach as high as 1.76×104 nm/refractive index unit (RIU) and the maximum wavelength interrogation resolution can be up to 5.68×10-6 RIU when the refractive index (RI) of analyte lies in (1.31, 1.36). Thanks to its excellent sensing performance, our proposed SPR sensor will have great potential applications for biological analytes detection, food safety control, bio-molecules detection and so on.  相似文献   

19.
20.
An octagonal photonic crystal fiber (O-PCF) structure with eight air-holes on the first ring is proposed based on a unit isosceles triangle. The propagation characteristics and cut-off behaviors of the O-PCF and the standard hexagonal PCF (H-PCF) are numerically investigated by combining the vector boundary method and the effective area method. The phase boundaries for cut-off, single-mode, and multi-mode operations between the O-PCF and H-PCF are calculated and compared. It is found that under the same pitch Λ and air filling fraction (AFF) of the air-holes the O-PCF has significantly wider wavelength range operating in single-mode region, more circular-like field distribution, and less confinement loss than the H-PCF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号