首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Red‐emissive π‐expanded diketopyrrolopyrroles (DPPs) with fluorescence reaching λ=750 nm can be easily synthesized by a three‐step strategy involving the preparation of diketopyrrolopyrrole followed by N‐arylation and subsequent intramolecular palladium‐catalyzed direct arylation. Comprehensive spectroscopic assays combined with first‐principles calculations corroborated that both N‐arylated and fused DPPs reach a locally excited (S1) state after excitation, followed by internal conversion to states with solvent and structural relaxation, before eventually undergoing intersystem crossing. Only the structurally relaxed state is fluorescent, with lifetimes in the range of several nanoseconds and tens of picoseconds in nonpolar and polar solvents, respectively. The lifetimes correlate with the fluorescence quantum yields, which range from 6 % to 88 % in nonpolar solvents and from 0.4 % and 3.2 % in polar solvents. A very inefficient (T1) population is responsible for fluorescence quantum yields as high as 88 % for the fully fused DPP in polar solvents.  相似文献   

2.
3.
4.
Herein, the solid‐state emission with good fluorescence quantum yields of N‐Boc‐indolylbenzothiadiazoles as a new class of fluorophores is described. Their solid‐state emission covers the wide range of the visible spectrum and the emission color can be tuned easily by changing the substituents on the two heteroaromatic rings. Among these, 3‐methylindolyl derivatives exhibit moreover autonomously self‐recovering mechanochromic luminescence, whereby the original solid‐state emission could be recovered spontaneously at room temperature after exposure to a mechanical stimulus. The emission color, as well as the recovery time for the color change could be tuned via the introduction of different substituents on the benzothiadiazole ring. We propose that the mechanism of the autonomously self‐recovering mechanochromic luminescence of 3‐methylindolylbenzothiadiazoles is based on a partial amorphization of the crystals upon exposure to the mechanical stimulus, followed by autonomous recovering in the form of recrystallization.  相似文献   

5.
The enhancement of the binding between halide anions and a Lewis acidic uranyl–salophen receptor has been achieved by the introduction of pendant electron‐deficient arene units into the receptor skeleton. The association and the occurrence of the elusive anion–π interaction with halide anions (as tetrabutylammonium salts) have been demonstrated in solution and in the solid state, providing unambiguous evidence on the interplay of the concerted interactions responsible for the anion binding.  相似文献   

6.
A rigid, covalently linked perylene‐3,4:9,10‐tetracarboxylic acid bisimide (PBI) cyclophane was synthesized by imidization of a bay‐substituted perylene bisanhydride with p‐xylylenediamine. The interchromophoric distance of approximately 6.5 Å establishes an ideal rigid cavity for the encapsulation of large aromatic compounds such as perylene and anthracene with binding constants up to 4.6×104 M ?1 (in CHCl3). For electron‐poor guest molecules, the complexation process is accompanied by a significantly increased fluorescence, whereas the emission intensity is dramatically quenched by more electron‐rich guests because of the formation of charge‐transfer complexes. Furthermore, the influence of the PBI core twist on the binding constant results in a remarkable selectivity towards more flexible aromatic guest molecules.  相似文献   

7.
Morphology control for intense solid‐state phosphorescence of non‐emissive, but potentially emissive crystals of platinum complexes and the mechanistic rationale are described. A series of trans‐bis(salicylaldiminato)platinum(II) complexes bearing linear alkyl chains ( 1 a : n=5; 1 b : n=8; 1 c : n=12; 1 d : n=14; 1 e : n=16; 1 f : n=18) was synthesized and the solid‐state emission properties were examined by using crystals/aggregates prepared under various precipitation conditions. Crystals of 1 e , prepared using “kinetic” conditions including rapid cooling, high concentrations, and poor solvents, emit intensive yellow phosphorescence (λmax=545 nm) under UV irradiation at 298 K with an absolute quantum efficiency of 0.36, whereas all the crystals of 1 a – 1 f prepared using “thermodynamic” conditions including slow cooling, low concentrations, and good solvents were either non‐ or less emissive with Φ298K values of 0.12 ( 1 a ), 0.11 ( 1 b ), 0.10 ( 1 c ), 0.07 ( 1 d ), 0.02 ( 1 e ), and 0.02 ( 1 f ) under the same measurement conditions. The amorphous solid 1 e , prepared by rapid cooling and freeze‐drying, was also non‐emissive (Φ298K=0.02, 0.02). Temperature‐dependent emission spectra showed that the kinetic crystals of 1 e exhibit high heat‐resistance towards emission decay with increasing temperature, whereas the amorphous solid 1 e is entirely heat‐quenchable. This is a rare example of the change from a non‐emissive crystal into a highly emissive crystal by morphology control through crystal engineering. Emission spectra and powder X‐ray diffraction (XRD) patterns of the emissive, kinetic crystals of 1 e are clearly distinct from those of the less emissive, thermodynamic crystals of 1 a – 1 f . Single‐crystal XRD unequivocally establishes that the thermodynamic crystals of 1 d have a multilayered lamellar structure supported by highly regulated, consecutive π‐stacking interactions between imine moieties, whereas the kinetic crystals of 1 e have a face‐to‐edge lamellar structure with less stacking. These results lead to the conclusion that 1) morphology control of long‐chained complexes exclusively generates a metastable herringbone‐based lamellar packing motif that exhibits intense emission and high heat‐resistance, while 2) a thermodynamically stable, highly regulated, consecutive stacking motif is unfavorable for solid‐state emission.  相似文献   

8.
Several carbazole‐based boron dipyrromethene (BODIPY) dyes were synthesized by organometallic approaches. Thiazole, benzothiazole, imidazole, benzimidazole, triazole, and indolone substituents were introduced at the 1‐position of the carbazole moiety, and boron complexation of each dipyrrin generated the corresponding compounds 1 , 2 a , and 3 – 6 . The properties of these products were investigated by UV/Vis and fluorescence spectroscopy, cyclic voltammetry, X‐ray crystallography, and DFT calculations. These compounds exhibited large Stokes shifts, and compounds 1 , 2 a , and 3 – 5 fluoresced both in solution and in the solid state. Complex 2 a showed the highest fluorescence quantum yield (ΦF) in the solid state, therefore boron complexes of the carbazole–benzothiazole hybrids 2 b – f , which had several different substituents, were prepared and the effects of the substituents on the photophysical properties of the compounds were examined. The fluorescence properties showed good correlation with the results of crystal‐packing analyses, and the dyes exhibited color‐tunable solid‐state fluorescence.  相似文献   

9.
10.
Amine‐functionalized α‐cyanostilbene derivatives (Z)‐2‐(4‐aminophenyl)‐3‐(4‐butoxyphenyl)acrylonitrile (ABA) and (Z)‐3‐(4‐butoxyphenyl)‐2‐[4‐(butylamino)phenyl]acrylonitrile (BBA) were designed for specific recognition of picric acid (PA), an environmental and biological pollutant. The 1:1 host–guest complexes formed between the chemosensors and PA enhanced fluorescence quenching, thus leading to sensitive and selective detection in aqueous media and the solid phase.  相似文献   

11.
The optical properties of a series of three cyclophanes comprising either identical or different perylene bisimide (PBI) chromophores were studied by UV/Vis absorption spectroscopy and their distinctive spectral features were analyzed. All the investigated cyclophanes show significantly different absorption features with respect to the corresponding constituent PBI monomers indicating strong coupling interactions between the PBI units within the cyclophanes. DFT calculations suggest a π‐stacked arrangement of the PBI units at close van der Waals distance in the cyclophanes with rotational displacement. Simulations of the absorption spectra based on time‐dependent quantum mechanics properly reproduced the experimental spectra, revealing exciton‐vibrational coupling between the chromophores both in homo‐ and heterodimer stacks. The PBI cyclophane comprising two different PBI chromophores represents the first example of a PBI heterodimer stack for which the exciton coupling has been investigated. The quantum dynamics analysis reveals that exciton coupling in heteroaggregates is indeed of similar strength as for homoaggregates.  相似文献   

12.
The ability of Ex 2 Box4+ as a host, able to trap guests containing both π‐electron rich (polycyclic aromatic hydrocarbons‐PAHs) and π‐electron poor (quinoid‐ and nitro‐PAHs) moieties was investigated to shed light on the main factors that control the host–guest (HG) interaction. The nature of the HG interactions was elucidated by energy decomposition (EDA‐NOCV), noncovalent interaction (NCI), and magnetic response analyses. EDA‐NOCV reveals that dispersion contributions are the most significant to sustain the HG interaction, while electrostatic and orbital contributions are very tiny. In fact, no significant covalent character in the HG interactions was observed. The obtained results point strictly to NCIs, modulated by dispersion contributions. Regardless of whether the guests contain π‐electron‐rich or π‐electron‐poor moieties, and no significant charge‐transfer was observed. All in all, HG interactions between guests 3‐14 and host 2 are predominantly modulated by π‐π stacking.  相似文献   

13.
Tricyclic basic dyes (proflavine, acridine orange, pyronine, pyronine Y, oxonine, thionine and methylene blue) often form one‐to‐one or two‐to‐one complexes with CB[7] and CB[8], respectively. In the case of pyronine Y, the complexes with CB[7] and CB[8] have a one‐to‐one and three‐to‐one stoichiometry, respectively. The binding constants for CB[7] complexes range from 3.07×106 to 1.70×107 m ?1. In the case of CB[8], the association constant varies between 3.24×1013 and 2.50×1016 m ?2. Overall, these binding constants are four orders of magnitude higher than those reported for the same dyes in β and γ‐cyclodextrins. Formation of the host–guest complexes leads to an increase in the fluorescence quantum yields in the case of CB[7], while the dimeric or trimeric dye encapsulated in CB[8] are remarkably less fluorescent than the same dye in diluted solutions.  相似文献   

14.
15.
1‐Cyano‐1,2‐bis(biphenyl)ethene (CNBE) derivatives with a hexa(ethylene glycol) group as an amphiphilic side chain were synthesized and the self‐assembling character and fluorescence behavior were investigated. The amphiphilic derivatives showed aggregate‐induced enhanced emission (AIEE) in water and in the solid state. The fluorescence quantum yield increased as the rigidity of the aggregates increased (i.e., in ethyl acetate<in water<in the solid state). As determined from measurements of fluorescence spectra, fluorescence quantum yields, and fluorescence lifetimes, a key factor for the enhanced emission is suppression of the nonradiative decay process arising from restricted molecular motion. Additionally, the difference in the emission rate constant is not negligible and can be used to interpret the difference in fluorescence quantum yield in water and in the solid state.  相似文献   

16.
Density functional calculations of 1H NMR spectra and reaction barriers at the ωB97XD/6‐311G(d,p)/continuum water level do not support the claimed identification of encarcerated 1,3‐dimethylcyclobutadiene in either the solid state or aqueous solution, as reported by Barboiu et al (Chem. Eur. 2011 , 17, 10021). Instead, previous suggestions that the species identified in the solid state is in fact 2‐oxabicyclo[2.2.0]hex‐5‐en‐3‐one (the Dewar lactone Me22 ) are reaffirmed. Analysis of the ground‐state electronic structure of this species indicates an unusual π‐anomeric effect is promoting a Dunitz‐like chemical reaction pathway leading to the eventual elimination of carbon dioxide and formation of 1,3‐dimethylcyclobutadiene.  相似文献   

17.
An anthracene cyclic hexamer was synthesized by the coupling reaction as a macrocyclic hydrocarbon host. This disk‐shaped host included a C60 guest in 1:1 ratio to form a Saturn‐type supramolecular complex in solution and in crystals. X‐ray analysis unambiguously revealed that the guest molecule was accommodated in the middle of the host cavity with several CH???π contacts. The association constant Ka determined by NMR titration measurements was 2.3×103 L mol?1 at 298 K in toluene. The structural features and the role of CH???π interactions are discussed with the aid of DFT calculations.  相似文献   

18.
The synthesis of a new class of robust squaraine dyes, colloquially named 1,2‐hemisquarimines (1,2‐HSQiMs), through the microwave‐assisted condensation of aniline derivatives with the 1,2‐squaraine core is reported. In CH3CN, 1,2‐HSQiMs show a broad absorption band with a high extinction coefficient and a maximum at around λ=530 nm, as well as an emission band centered at about λ=574 nm, that are pH dependent. Protonation of the imine nitrogen causes a redshift of both absorption and emission maxima, with a concomitant increase in the lifetime of the emitting excited state. Encapsulation of the chromophore into a cucurbit[7]uril host revealed fluorescence enhancement and increased photostability in water. The redox characteristics of 1,2‐HSQiMs indicate that charge injection into TiO2 is possible; this opens up promising perspectives for their use as photosensitizers for solar energy conversion.  相似文献   

19.
The effect of the macrocyclic host, cucurbit[7]uril (CB7), on the photophysical properties of the 2‐(2′‐hydroxyphenyl)benzimidazole (HPBI) dye have been investigated in aqueous solution by using ground‐state absorption and steady‐state and time‐resolved fluorescence measurements. All three prototropic forms of the dye (cationic, neutral, and anionic) form inclusion complexes with CB7, with the largest binding constant found for the cationic form (K≈2.4×106 M ?1). At pH≈4, the appearance of a blue emission band upon excitation of the HPBI cation in the presence of CB7 indicates that encapsulation into the CB7 cavity retards the deprotonation process of the excited cation, and hence reduces its subsequent conversion to the keto form. Excitation of the neutral form (pH≈8.5), however, leads to an increase in the keto form fluorescence, indicating an enhanced excited‐state intramolecular proton‐transfer process for the encapsulated dye. In both the ground and excited states, the two pKa values of the HPBI dye show upward shifts in the presence of CB7. The prototropic equilibrium of the CB7‐complexed dye is represented by a six‐state model, and the pH‐dependent changes in the binding constants have been analyzed accordingly. It has been observed that the calculated pKa values using this six‐state model match well with the values obtained experimentally. The changes in the pKa values in the presence of CB7 have been corroborated with the modulation of the proton‐transfer process of the dye within the host cavity.  相似文献   

20.
Nanocarbons are synthetic carbon‐rich compounds with polyaromatic frameworks that have lately attracted attention as emerging functional materials. However, their extreme hydrophobicity and aggregation peculiarity, besides their shape and size diversities, precluded their study in solution, especially in “green” water. More convenient and general solubilizing methods of nanocarbon frameworks are required by using non‐covalent supramolecular interactions. Here we report a protocol for solubilizing a wide range of nanocarbons, that is, fullerenes (C60, C70, C84, and C120), polyarenes (tetracene, pentacene, perylene, coronene, and hexabenzocoronene), and carbon nanotubes (single‐walled and multi‐walled CNTs), in water through manual grinding with V‐shaped polyaromatic amphiphiles. The obtained aqueous nanocomposites are composed of nanocarbons encircled by the polyaromatic frameworks of the amphiphiles through multiple aromatic–aromatic interactions. Notably, the encapsulated photosensitive nanocarbons, such as tetracene, pentacene, and fullerene dimer, exhibit unusual stability toward UV/Vis light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号