首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The pyrylium group is a selective reagent for ε‐amino groups in proteins. In particular, for fluorescence labeling, a number of advantages over traditional N‐hydroxysuccinimidyl ester chemistry were recognized such as the rapid prestaining procedure. Here, we have investigated the labeling reaction for the fluorogenic pyrylium dye Py‐1 using liquid chromatography coupled to MS with the aim of determining its specificity and possible side products. Peptides containing no, one, and two lysine residue and a choice of no or one cysteine residue were labeled with Py‐1 at yields > 30%. Gas phase fragmentation proved both labeling of lysine residues as well as that of the N‐terminus also in peptides that contained a lysine residue. Evidence for cysteine labeling was not found, but several other products were detected such as the results of rearrangements with adjacent acidic amino acids. Apart from the use as a fluorogenic label, Py‐1 recommends itself for N‐terminal charge tagging as alternative to the commonly used quaternary ammonium salts. Predominantly a‐ and b‐type ion series were observed for N‐terminally labeled peptides. Further applications include chromophore tagging since the labeled product is not only fluorescent but also colored red.  相似文献   

3.
Superior to linear peptides in biological activities, cyclic peptides are considered to have great potential as therapeutic agents. To identify cyclic‐peptide ligands for therapeutic targets, phage‐displayed peptide libraries in which cyclization is achieved by the covalent conjugation of cysteines have been widely used. To resolve drawbacks related to cysteine conjugation, we have invented a phage‐display technique in which its displayed peptides are cyclized through a proximity‐driven Michael addition reaction between a cysteine and an amber‐codon‐encoded N?‐acryloyl‐lysine (AcrK). Using a randomized 6‐mer library in which peptides were cyclized at two ends through a cysteine–AcrK linker, we demonstrated the successful selection of potent ligands for TEV protease and HDAC8. All selected cyclic peptide ligands showed 4‐ to 6‐fold stronger affinity to their protein targets than their linear counterparts. We believe this approach will find broad applications in drug discovery.  相似文献   

4.
Superior to linear peptides in biological activities, cyclic peptides are considered to have great potential as therapeutic agents. To identify cyclic‐peptide ligands for therapeutic targets, phage‐displayed peptide libraries in which cyclization is achieved by the covalent conjugation of cysteines have been widely used. To resolve drawbacks related to cysteine conjugation, we have invented a phage‐display technique in which its displayed peptides are cyclized through a proximity‐driven Michael addition reaction between a cysteine and an amber‐codon‐encoded N?‐acryloyl‐lysine (AcrK). Using a randomized 6‐mer library in which peptides were cyclized at two ends through a cysteine–AcrK linker, we demonstrated the successful selection of potent ligands for TEV protease and HDAC8. All selected cyclic peptide ligands showed 4‐ to 6‐fold stronger affinity to their protein targets than their linear counterparts. We believe this approach will find broad applications in drug discovery.  相似文献   

5.
A mild method for the arylation of lysine in an unprotected peptide is presented. In the presence of a preformed biarylphosphine‐supported palladium(II)–aryl complex and a weak base, lysine amino groups underwent C−N bond formation at room temperature. The process generally exhibited high selectivity for lysine over other amino acids containing nucleophilic side chains and was applicable to the conjugation of a variety of organic compounds, including complex drug molecules, with an array of peptides. Finally, this method was also successfully applied to the formation of cyclic peptides by macrocyclization.  相似文献   

6.
7.
Macrocyclic compounds have received increasing attention in recent years. With their large surface area, they hold promise for inhibiting protein–protein interactions, a chemical space that was thought to be undruggable. Although many chemical methods have been developed for peptide macrocyclization, enzymatic methods have emerged as a promising new economical approach. Thus far, most enzymes have been shown to act on l ‐peptides; their ability to cyclize d ‐amino‐acid‐containing peptides has rarely been documented. Herein we show that macrocycles consisting of d ‐amino acids, except for the Asn residue at the ligating site, were efficiently synthesized by butelase 1, an Asn/Asp‐specific ligase. Furthermore, by using a peptide‐library approach, we show that butelase 1 tolerates most of the d ‐amino acid residues at the P1′′ and P2′′ positions.  相似文献   

8.
Twelve peptides, 1 – 12 , have been synthesized, which consist of alternating sequences of α‐ and β‐amino acid residues carrying either proteinogenic side chains or geminal dimethyl groups (Aib). Two peptides, 13 and 14 , containing 2‐methyl‐3‐aminobutanoic acid residues or a ‘random mix’ of α‐, β2‐, and β3‐amino acid moieties were also prepared. The new compounds were fully characterized by CD (Figs. 1 and 2), and 1H‐ and 13C‐NMR spectroscopy, and high‐resolution mass spectrometry (HR‐MS). In two cases, 3 and 14 , we discovered novel types of turn structures with nine‐ and ten‐membered H‐bonded rings forming the actual turns. In two other cases, 8 and 11 , we found 14/15‐helices, which had been previously disclosed in mixed α/β‐peptides containing unusual β‐amino acids with non‐proteinogenic side chains. The helices are formed by peptides containing the amino acid moiety Aib in every other position, and their backbones are primarily not held together by H‐bonds, but by the intrinsic conformations of the containing amino acid building blocks. The structures offer new possibilities of mimicking peptide–protein and protein–protein interactions (PPI).  相似文献   

9.
The post translational modifications of histone variants are playing an important role in the structure of chro‐ matin, the regulation of gene activities and the diagnosis of diseases, and conducting in‐depth researches and discovering new sites depend on new and rational analytical methods to some extent. In this work, the combinatorial method of high resolution LTQ‐Orbitrap mass spectrometry and multiple enzymes was employed to identify the post translational modifications (PTMs) of histone H4 of human liver cells. The novel methylation site, argnine 67 (R 67), was observed besides some sites reported previously such as lysine 31 (K 31), lysine 44 (K 44), argnine 55 (R 55) and lysine 59 (K 59) in the global domain. Meanwhile, various combinations of acetylation of lysine 5 (K 5), lysine 8 (K 8), lysine 12 (K 12), lysine 16 (K 16) and methylation of lysine 20 (K 20) in the NH2‐terminal tails were also identified after the LC‐MS/MS analysis of trypsin, Arg‐C, Glu‐C and chymotrypsin digests.  相似文献   

10.
Despite the importance of stapled peptides for drug discovery, only few practical processes to prepare cross‐linked peptides have been described; thus the structural diversity of available staple motifs is currently limited. At the same time, C−H activation has emerged as an efficient approach to functionalize complex molecules. Although there are many reports on the C−H functionalization of amino acids, examples of post‐synthetic peptide C−H modification are rare and comprise almost only C(sp2)−H activation. Herein, we report the development of a palladium‐catalyzed late‐stage C(sp3)−H activation method for peptide stapling, affording an unprecedented hydrocarbon cross‐link. This method was first employed to prepare a library of stapled peptides in solution. The compatibility with various amino acids as well as the influence of the size (i ,i +3 and i ,i +4) and length of the staple were investigated. Finally, a simple solid‐phase procedure was also established.  相似文献   

11.
Formylglycine‐generating enzymes are of increasing interest in the field of bioconjugation chemistry. They catalyze the site‐specific oxidation of a cysteine residue to the aldehyde‐containing amino acid Cα‐formylglycine (FGly). This non‐canonical residue can be generated within any desired target protein and can subsequently be used for bioorthogonal conjugation reactions. The prototypic formylglycine‐generating enzyme (FGE) and the iron‐sulfur protein AtsB display slight variations in their recognition sequences. We designed specific tags in peptides and proteins that were selectively converted by the different enzymes. Combination of the different tag motifs within a single peptide or recombinant protein enabled the independent and consecutive introduction of two formylglycine residues and the generation of heterobifunctionalized protein conjugates.  相似文献   

12.
Crown ether amino acids (CEAAs) with a luminescent phthalic ester or phthalimide moiety have been prepared. Simple peptide chemistry covalently tethers the macrocycles to give ditopic ammonium-ion binders. The binding events of both crown ether groups are monitored independently by changes of their specific emission properties. The affinity of the bis-CEAA to bis-ammonium ions is distance dependent, which allows distinguishing between isomeric small peptides containing a lysine residue in different positions.  相似文献   

13.
Presently, little is known of how the inter‐organelle crosstalk impacts cancer cells owing to the lack of approaches that can manipulate inter‐organelle communication in cancer cells. We found that a negatively charged, enzyme cleavable peptide (MitoFlag) enables the trafficking of histone protein H2B, a nuclear protein, to the mitochondria in cancer cells. MitoFlag interacts with the nuclear location sequence of H2B to block it from entering the nucleus. A protease on the mitochondria cleaves the Flag from the MitoFlag/H2B complex to form assemblies that retain H2B on the mitochondria and facilitate H2B entering the mitochondria. Adding NLS, replacing aspartic acid by glutamic acid residues, or changing the l ‐ to d ‐aspartic acid residue on MitoFlag abolishes the trafficking of H2B into mitochondria of HeLa cells. As the first example of the enzyme‐instructed self‐assembly of a synthetic peptide for trafficking endogenous proteins, this work provides insights for understanding and manipulating inter‐organelle communication in cells.  相似文献   

14.
Methods for the chemoselective modification of amino acids and peptides are powerful techniques in biomolecular chemistry. Among other applications, they enable the total synthesis of artificial peptides. In recent years, significant momentum has been gained by exploiting palladium‐catalyzed cross‐coupling for peptide modification. Despite major advances, the prefunctionalization elements on the coupling partners translate into undesired byproduct formation and lengthy synthetic operations. In sharp contrast, we herein illustrate the unprecedented use of versatile ruthenium(II)carboxylate catalysis for the step‐economical late‐stage diversification of α‐ and β‐amino acids, as well as peptides, through chemo‐selective C−H arylation under racemization‐free reaction conditions. The ligand‐accelerated C−H activation strategy proved water‐tolerant and set the stage for direct fluorescence labelling as well as various modes of peptide ligation with excellent levels of positional selectivity in a bioorthogonal fashion. The synthetic utility of our approach is further demonstrated by twofold C−H arylations for the complexity‐increasing assembly of artificial peptides within a multicatalytic C−H activation manifold.  相似文献   

15.
The core histones, H2A, H2B, H3 and H4, undergo post‐translational modifications (PTMs) including lysine acetylation, methylation and ubiquitylation, arginine methylation and serine phosphorylation. Lysine residues may be mono‐, di‐ and trimethylated, the latter resulting in an addition of mass to the protein that differs from acetylation by only 0.03639 Da, but that can be distinguished either on high‐performance mass spectrometers with sufficient mass accuracy and mass resolution or via retention times. Here we describe the use of chemical derivatization to quantify methylated and acetylated histone isoforms by forming deuteroacetylated histone derivatives prior to tryptic digestion and bottom‐up liquid chromatography‐mass spectrometric analysis. The deuteroacetylation of unmodified or mono‐methylated lysine residues produces a chemically identical set of tryptic peptides when comparing the unmodified and modified versions of a protein, making it possible to directly quantify lysine acetylation. In this work, the deuteroacetylation technique is used to examine a single histone H3 peptide with methyl and acetyl modifications at different lysine residues and to quantify the relative abundance of each modification in different deacetylase and methylase knockout yeast strains. This application demonstrates the use of the deuteroacetylation technique to characterize modification ‘cross‐talk’ by correlating different PTMs on the same histone tail. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Hydroxylation of lysine, one of posttranslational modifications of proteins, generates 5‐hydroxylysine (Koh) and plays a crucial role in regulating protein functions in cellular activity. We have developed a chemical labeling method of Koh. The 1,2‐aminoalcohol moiety of Koh in synthetic peptide sequences was trapped by an alkyne‐containing benzimidate to form a 2‐oxazoline ring. An additional ammonia treatment process removed the undesirable amidine residue formed between benzimidate and lysine. During the ammonia treatment, the oxazoline residue formed at Koh mainly remained intact, and the ring opening to the amide form was observed for only part of oxazoline, indicating that the chemical labeling is amino acid selective. Azide‐substituted biotin or fluorescent dye was attached to the peptide through Huisgen cycloaddition at Koh and converted into an alkyne‐labeled oxazoline form. The Koh‐labeling assay could provide a platform to enhance proteomic research of lysine hydroxylation.  相似文献   

17.
Using amber suppression in coordination with a mutant pyrrolysyl‐tRNA synthetase‐tRNAPyl pair, azidonorleucine is genetically encoded in E. coli . Its genetic incorporation followed by traceless Staudinger ligation with a phosphinothioester allows the convenient synthesis of a protein with a site‐specifically installed lysine acylation. By simply changing the phosphinothioester identity, any lysine acylation type could be introduced. Using this approach, we demonstrated that both lysine acetylation and lysine succinylation can be installed selectively in ubiquitin and synthesized histone H3 with succinylation at its K4 position (H3K4su). Using an H3K4su‐H4 tetramer as a substrate, we further confirmed that Sirt5 is an active histone desuccinylase. Lysine succinylation is a recently identified post‐translational modification. The reported technique makes it possible to explicate regulatory functions of this modification in proteins.  相似文献   

18.
Incorporation of silicon‐containing amino acids in peptides is known to endow the peptide with desirable properties such as improved proteolytic stability and increased lipophilicity. In the presented study, we demonstrate that incorporation of β‐silicon‐β3‐amino acids into the antimicrobial peptide alamethicin provides the peptide with improved membrane permeabilizing properties. A robust synthetic procedure for the construction of β‐silicon‐β3‐amino acids was developed and the amino acid analogues were incorporated into alamethicin at different positions of the hydrophobic face of the amphipathic helix by using SPPS. The incorporation was shown to provide up to 20‐fold increase in calcein release as compared with wild‐type alamethicin.  相似文献   

19.
Eleven different N‐terminal protecting groups (acetyl, benzoyl, FMOC, etc.) were employed for the HPLC separation of oligoalanine peptide enantiomers containing up to six amino acids. Isocratic HPLC separations were performed using a hydro‐organic buffered mobile phase and 4 mm ID columns containing three different chiral anion exchange stationary phases based on cinchona alkaloid‐derived chiral selectors. For most peptides successful separations could be obtained with all protecting groups, although those comprising aromatic moieties were found to yield higher enantioselectivities than those with aliphatic residues, since they are capable of undergoing favourable π‐π interactions with the selector. Systematic investigations concerning the presence or absence of structural features of related protecting groups showed that the use of protecting groups that are optimally adjusted to the binding pocket of the chiral selector effects a significant gain in enantioselectivity. At the same time these studies provided new insights into the chiral recognition mechanism.  相似文献   

20.
Late‐stage BODIPY diversification of structurally complex amino acids and peptides was accomplished by racemization‐free palladium‐catalyzed C(sp3)?H activation. Transformative fluorescence modification proved viable by triazole‐assisted C(sp3)?H arylation in a chemo‐ and site‐selective fashion, providing modular access to novel BODIPY peptide sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号