首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bifunctional nanocrystals with integrated plasmonic and catalytic activities hold great promise for analyzing chemical reactions by in situ surface‐enhanced Raman spectroscopy. This Minireview gives a brief introduction to the general strategies for designing such nanocrystals, followed by four typical examples, including their fabrication, characterization, and potential limitation. We then use the reduction of 4‐nitrothiophenol and oxidation of 4‐aminothiophenol as two model systems to demonstrate the capabilities of these bifunctional nanocrystals to monitor chemical reactions for the elucidation of reaction mechanisms and measurement of kinetics. We conclude with perspectives on further development of these bifunctional nanocrystals into a viable platform for investigating other types of catalytic reactions.  相似文献   

2.
Acquiring the kinetics of gas–nanoparticle fast reactions under ambient pressure is a challenge owing to the lack of appropriate in situ techniques. Now an approach has been developed that integrates time‐resolved in situ electron diffraction and an atmospheric gas cell system in transmission electron microscopy, allowing quantitative structural information to be obtained under ambient pressure with millisecond time resolution. The ultrafast oxidation kinetics of Ni nanoparticles in oxygen was vividly obtained. In contrast to the well‐accepted Wagner and Mott–Cabrera models (diffusion‐dominated), the oxidation of Ni nanoparticles is linear at the initial stage (<0.5 s), and follows the Avrami–Erofeev model (n=1.12) at the following stage, which indicates the oxidation of Ni nanoparticles is a nucleation and growth dominated process. This study gives new insights into Ni oxidation and paves the way to study the fast reaction kinetics of nanoparticles using ultrafast in situ techniques.  相似文献   

3.
4.
The electronic and structural properties of vanadium‐containing phases govern the formation of isolated active sites at the surface of these catalysts for selective alkane oxidation. This concept is not restricted to vanadium oxide. The deliberate use of hydrothermal techniques can turn the typical combustion catalyst manganese oxide into a selective catalyst for oxidative propane dehydrogenation. Nanostructured, crystalline MnWO4 serves as the support that stabilizes a defect‐rich MnOx surface phase. Oxygen defects can be reversibly replenished and depleted at the reaction temperature. Terminating MnOx zigzag chains on the (010) crystal planes are suspected to bear structurally site‐isolated oxygen defects that account for the unexpectedly good performance of the catalyst in propane activation.  相似文献   

5.
Colloidal microcapsules (MCs) are highly modular, inherently multiscale constructs of capsules stabilized by nano‐/microparticle shells, with applications in many areas of materials and biological sciences, such as drug delivery, encapsulation, and microreactors. Until recently, fabrication of colloidal MCs focused on the use of submicron‐sized particles because the smaller nanoparticles (NPs) are inherently unstable at the interface owing to thermal disorder. However, stable microcapsules can now be obtained by tuning the interactions between the nanometer‐sized building blocks at the liquid–liquid interface. This Review highlights recent developments in the fabrication of colloidal MCs using NPs.  相似文献   

6.
7.
使用金纳米粒子为增强因子的表面增强拉曼光谱技术,通过连续小波变换将拉曼光谱信号转化到小波空间(墨西哥帽小波作为小波基)。该步骤能够减轻信号中基线变化及随机噪音的影响并找到峰位置和最佳小波尺度系数。依据小波空间中的信息,对混合物光谱及标准谱光谱进行反向搜索得到反向搜索匹配系数(Reverse match quality,RMQ),作为判断混合物中目标成分是否存在的依据。该算法可对混合物中的目标物质进行准确定性,并已成功应用于多种食品中色素鉴定。食品中色素的检出率达到99%,且结果稳健,其效果明显优于传统的命中质量系数法(Hit quality index,HQI)。这证实了小波空间反向搜索方法是一种快速而准确的拉曼光谱定性算法。  相似文献   

8.
表面增强拉曼光谱(SERS)因极高的检测灵敏度及丰富的光谱指纹信息而在物质的结构鉴定方面得到广泛应用,但对于复杂混合物的SERS光谱解析仍存在较大挑战,因此并不能有效用于直接实时监测化学反应过程.本工作以有序Au纳米粒子二维阵列膜为基底,将SERS技术与高效液相色谱(HPLC)联用,充分发挥两者在高灵敏度检测和高效分离方面的优势,实现了对苯硼酸和3-溴吡啶的Suzuki偶联反应的实时连续分离和检测.研究表明该反应体系的混合液的HPLC中检测到保留时间分别位于2.1 min,2.8 min,3.6 min,15.3 min的四种不同物质,第一种物质对应于反应物苯硼酸;第二、三种物质分别对应3-溴吡啶和主产物苯基吡啶,它们的SERS光谱特征与标准物完全一致,最后一种物质的SERS光谱特征与联苯一致,由此说明反应过程中的副产物为联苯.通过对最终反应物进行层析分离提纯得到主产物,NMR谱特征表明其为苯基吡啶,这与SERS研究结果一致,而副产物联苯的产率较低,提纯困难而无法通过NMR分析获得其结构.由此可见,SERS-HPLC联用实现了分离与鉴别的功能集成,有望发展成为一种具有潜在应用前景的有机反应历程的实时检测工具.  相似文献   

9.
10.
The reduction of dioxygen in the presence of sodium cations can be tuned to give either sodium superoxide or sodium peroxide discharge products at the electrode surface. Control of the mechanistic direction of these processes may enhance the ability to tailor the energy density of sodium–oxygen batteries (NaO2: 1071 Wh kg?1 and Na2O2: 1505 Wh kg?1). Through spectroelectrochemical analysis of a range of non‐aqueous solvents, we describe the dependence of these processes on the electrolyte solvent and subsequent interactions formed between Na+ and O2?. The solvents ability to form and remove [Na+‐O2?]ads based on Gutmann donor number influences the final discharge product and mechanism of the cell. Utilizing surface‐enhanced Raman spectroscopy and electrochemical techniques, we demonstrate an analysis of the response of Na‐O2 cell chemistry with sulfoxide, amide, ether, and nitrile electrolyte solvents.  相似文献   

11.
The electrochemical deposition of Cu nanoparticles with an average diameter of approximately 25–35 nm has been reported at liquid–liquid interfaces by using the organic‐phase electron‐donor decamethylferrocene (DMFc). The electrodeposited Cu nanoparticles display excellent catalytic activity for the hydrogen evolution reaction (HER); this is the first reported catalytic effect of Cu nanoparticles at liquid–liquid interfaces.  相似文献   

12.
The spectral evolution of the surface-enhanced Raman scattering (SERS) of 4-tert-butylbenzylmercaptan (4-tBBM) on gold nanoparticles assembly under laser irradiation is reported. The relative intensities of typical peaks in the spectrum of 4-tBBM gradually change with irradiation time. Comparison of the rate of spectral changes under several experimental conditions indicates that the surface plasmon resonance (SPR) induced heat in the gold nanoparticles assembly is the origin of the spectral evolution. During the process of self-assembly, 4-tBBM molecules do not form a compact ordered monolayer because of the spatial hindrance of the 4-tert-butyl end group. The heat induced by laser irradiation drives the 4-tBBM molecules to rearrange to a more stable orientation. Supported by the National Natural Science Foundation of China (Grant No. 20473004) and the Beijing Key Lab for Nanophotonics and Nanostructure  相似文献   

13.
14.
15.
16.
Raman spectroscopy is one of the main analytical techniques used in optical metrology. It is a vibration, marker-free technique that provides insight into the structure and composition of tissues and cells at the molecular level. Raman spectroscopy is an outstanding material identification technique. It provides spatial information of vibrations from complex biological samples which renders it a very accurate tool for the analysis of highly complex plant tissues. Raman spectra can be used as a fingerprint tool for a very wide range of compounds. Raman spectroscopy enables all the polymers that build the cell walls of plants to be tracked simultaneously; it facilitates the analysis of both the molecular composition and the molecular structure of cell walls. Due to its high sensitivity to even minute structural changes, this method is used for comparative tests. The introduction of new and improved Raman techniques by scientists as well as the constant technological development of the apparatus has resulted in an increased importance of Raman spectroscopy in the discovery and defining of tissues and the processes taking place in them.  相似文献   

17.
18.
Early studies showed that the adsorption of nanorods may start from a special “anchored” state, in which the nanorods lose translational motion but retain rotational freedom. Insight into how the anchored nanorods rotate should provide additional dimensions for understanding particle–surface interactions. Based on conventional time‐resolution studies, gold nanorods are thought to continuously rotate following initial interactions with negatively charged glass surfaces. However, this nanosecond time‐resolution study reveals that the apparent continuous rotation actually consists of numerous fast, intermittent rotations or transitions between a small number of weakly immobilized states, with the particle resting in the immobilized states most of the time. The actual rotation from one immobilized state to the other happens on a 1 ms timescale, that is, approximately 50 times slower than in the bulk solution.  相似文献   

19.
20.
The use of the ionic liquid/n‐hexane interface as a new class of reaction medium for the Diels–Alder reaction gives large rate enhancements of the order of 106 to 108 times and high stereoselectivity, as compared to homogeneous media. The rate enhancement is attributed to the H‐bonding abilities and polarities of the ionic liquids, whereas the hydrophobicity of ionic liquids was considered to be the factor in controlling stereoselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号