共查询到20条相似文献,搜索用时 15 毫秒
1.
Boosting the Energy Density of Carbon‐Based Aqueous Supercapacitors by Optimizing the Surface Charge
《Angewandte Chemie (International ed. in English)》2017,56(20):5454-5459
The voltage of carbon‐based aqueous supercapacitors is limited by the water splitting reaction occurring in one electrode, generally resulting in the promising but unused potential range of the other electrode. Exploiting this unused potential range provides the possibility for further boosting their energy density. An efficient surface charge control strategy was developed to remarkably enhance the energy density of multiscale porous carbon (MSPC) based aqueous symmetric supercapacitors (SSCs) by controllably tuning the operating potential range of MSPC electrodes. The operating voltage of the SSCs with neutral electrolyte was significantly expanded from 1.4 V to 1.8 V after simple adjustment, enabling the energy density of the optimized SSCs reached twice as much as the original. Such a facile strategy was also demonstrated for the aqueous SSCs with acidic and alkaline electrolytes, and is believed to bring insight in the design of aqueous supercapacitors. 相似文献
2.
3.
Nanoarchitectured Graphene‐Based Supercapacitors for Next‐Generation Energy‐Storage Applications 下载免费PDF全文
Rahul R. Salunkhe Ying‐Hui Lee Kuo‐Hsin Chang Jing‐Mei Li Patrice Simon Jing Tang Nagy L. Torad Prof. Dr. Chi‐Chang Hu Prof. Dr. Yusuke Yamauchi 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(43):13838-13852
Tremendous development in the field of portable electronics and hybrid electric vehicles has led to urgent and increasing demand in the field of high‐energy storage devices. In recent years, many research efforts have been made for the development of more efficient energy‐storage devices such as supercapacitors, batteries, and fuel cells. In particular, supercapacitors have great potential to meet the demands of both high energy density and power density in many advanced technologies. For the last half decade, graphene has attracted intense research interest for electrical double‐layer capacitor (EDLC) applications. The unique electronic, thermal, mechanical, and chemical characteristics of graphene, along with the intrinsic benefits of a carbon material, make it a promising candidate for supercapacitor applications. This Review focuses on recent research developments in graphene‐based supercapacitors, including doped graphene, activated graphene, graphene/metal oxide composites, graphene/polymer composites, and graphene‐based asymmetric supercapacitors. The challenges and prospects of graphene‐based supercapacitors are also discussed. 相似文献
4.
Zhao Wang Dr. Min Zhou Hao Chen Dr. Jingui Jiang Prof. Dr. Shiyou Guan 《化学:亚洲杂志》2014,9(10):2789-2797
A series of hierarchical activated mesoporous carbons (AMCs) were prepared by the activation of highly ordered, body‐centered cubic mesoporous phenolic‐resin‐based carbon with KOH. The effect of the KOH/carbon‐weight ratio on the textural properties and capacitive performance of the AMCs was investigated in detail. An AMC prepared with a KOH/carbon‐weight ratio of 6:1 possessed the largest specific surface area (1118 m2 g?1), with retention of the ordered mesoporous structure, and exhibited the highest specific capacitance of 260 F g?1 at a current density of 0.1 A g?1 in 1 M H2SO4 aqueous electrolyte. This material also showed excellent rate capability (163 F g?1 retained at 20 A g?1) and good long‐term electrochemical stability. This superior capacitive performance could be attributed to a large specific surface area and an optimized micro‐mesopore structure, which not only increased the effective specific surface area for charge storage but also provided a favorable pathway for efficient ion transport. 相似文献
5.
Importance of Micropore–Mesopore Interfaces in Carbon Dioxide Capture by Carbon‐Based Materials 下载免费PDF全文
Dr. Gema Durá Dr. Vitaliy L. Budarin Dr. José A. Castro‐Osma Dr. Peter S. Shuttleworth Sophie C. Z. Quek Prof. James H. Clark Prof. Michael North 《Angewandte Chemie (International ed. in English)》2016,55(32):9173-9177
Mesoporous carbonaceous materials (Starbons®) derived from low‐value/waste bio‐resources separate CO2 from CO2/N2 mixtures. Compared to Norit activated charcoal (AC), Starbons® have much lower microporosities (8–32 % versus 73 %) yet adsorb up to 65 % more CO2. The presence of interconnected micropores and mesopores is responsible for the enhanced CO2 adsorption. The Starbons® also showed three–four times higher selectivity for CO2 adsorption rather than N2 adsorption compared to AC. 相似文献
6.
《化学:亚洲杂志》2017,12(15):1944-1951
Exploring suitable electrode materials is a fundamental step toward developing Al batteries with enhanced performance. In this work, we explore using density functional theory calculations the feasibility of single‐walled carbon nanotubes (SWNTs) as a cathode material for Al batteries. Carbon nanotubes with hollow structures and large surface area are able to overcome the difficulty of activating the opening of interlayer spaces as observed in graphite electrode during the first intercalation cycle. Our results show that AlCl4 binds strongly with the SWNT to result in an energetically and thermally stable AlCl4‐adsorbed SWNT system. Diffusion calculations show that the SWNT system allows ultrafast diffusion of AlCl4 with a more favorable inner surface diffusion than outer surface diffusion. Our charge‐density difference and Bader atomic charge analysis confirm the oxidation of SWNT upon adsorption of AlCl4, which shows a similar behavior to the previously studied graphite cathode. The average open‐circuit voltage and AlCl4 storage capacity increases with increasing SWNT diameter and can be as high as 1.96 V and 275 mA h g−1 in (25,25) SWNT relative to graphite (70 mA h g−1). All of these properties show that SWNTs are a potential cathode material for high‐performance Al batteries and should be explored further. 相似文献
7.
《Chemphyschem》2003,4(6):595-603
Optically transparent, mesostructured titanium dioxide thin films were fabricated using an amphiphilic poly(alkylene oxide) block copolymer template in combination with retarded hydrolysis of a titanium isopropoxide precursor. Prior to calcination, the films displayed a stable hexagonal mesophase and high refractive indices (1.5 to 1.6) relative to mesostructured silica (1.43). After calcination, the hexagonal mesophase was retained with surface areas >300 m2 g?1. The dye Rhodamine 6G (commonly used as a laser dye) was incorporated into the copolymer micelle during the templating process. In this way, novel dye‐doped mesostructured titanium dioxide films were synthesised. The copolymer not only directs the film structure, but also provides a solubilizing environment suitable for sustaining a high monomer‐to‐aggregate ratio at elevated dye concentrations. The dye‐doped films displayed optical thresholdlike behaviour characteristic of amplified spontaneous emission. Soft lithography was successfully applied to micropattern the dye‐doped films. These results pave the way for the fabrication and demonstration of novel microlaser structures and other active optical structures. This new, high‐refractive index, mesostructured, dye‐doped material could also find applications in areas such as optical coatings, displays and integrated photonic devices. 相似文献
8.
9.
10.
Three‐Dimensional Nitrogen‐Doped Hierarchical Porous Carbon as an Electrode for High‐Performance Supercapacitors 下载免费PDF全文
Jing Tang Dr. Tao Wang Dr. Rahul R. Salunkhe Prof. Saad M. Alshehri Dr. Victor Malgras Prof. Yusuke Yamauchi 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(48):17293-17298
A facile and sustainable procedure for the synthesis of nitrogen‐doped hierarchical porous carbons with a three‐dimensional interconnected framework (NHPC‐3D) was developed. The strategy, based on a colloidal crystal‐templating method, utilizes nitrogenous dopamine as the precursor due to its unique properties, including self‐polymerization under mild alkaline conditions, coating onto various surfaces, a high carbonization yield, and well‐preserved nitrogen doping after heat treatment. The obtained NHPC‐3D possesses a high surface area of 1056 m2 g?1, a large pore volume of 2.56 cm3 g?1, and a high nitrogen content of 8.2 wt %. The NHPC‐3D is implemented as the electrode material of a supercapacitor and exhibits a specific capacitance as high as 252 F g?1 at a current density of 2 A g?1. The device also shows a high capacitance retention of 75.7 % at a higher current density of 20 A g?1 in aqueous electrolyte due to a sufficient surface area for charge accommodation, reversible pseudocapacitance, and minimized ion‐transport resistance, as a result of the advantageous interconnected hierarchical porous texture. These results showcase NHPC‐3D as a promising candidate for electrode materials in supercapacitors. 相似文献
11.
Carbon‐Based Electrodes for Sensitive Electroanalytical Determination of Aminonaphthalenes 下载免费PDF全文
Jaroslava Zavazalova Mariana Emilia Ghica Karolina Schwarzova‐Peckova Jiri Barek Christopher M. A. Brett 《Electroanalysis》2015,27(7):1556-1564
The electroanalytical performance of bare glassy carbon electrodes (GCE) for the determination of 1‐aminonaphthalene (1‐AN) and 2‐aminonaphthalene (2‐AN) was compared with GCE modified by a Nafion permselective membrane or multiwalled carbon nanotubes and with other types of carbon‐based materials, carbon film and boron doped diamond. Nafion‐modified GCE gave the highest sensitivity and lowest detection limit (0.4 µmol L?1) for differential pulse voltammetric determination of 1‐AN. Electrochemical impedance spectroscopy gave information about the processes at the electrode surface. Simultaneous determination of 1‐AN and 2‐AN in a mixture at GCE and their determination in model samples of river water is presented. 相似文献
12.
13.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(14):3978-3982
On‐chip micro‐supercapacitors (MSCs) are important Si‐compatible power‐source backups for miniaturized electronics. Despite their tremendous advantages, current on‐chip MSCs require harsh processing conditions and typically perform like resistors when filtering ripples from alternating current (AC). Herein, we demonstrated a facile layer‐by‐layer method towards on‐chip MSCs based on an azulene‐bridged coordination polymer framework (PiCBA). Owing to the good carrier mobility (5×10−3 cm2 V−1 s−1) of PiCBA, the permanent dipole moment of azulene skeleton, and ultralow band gap of PiCBA, the fabricated MSCs delivered high specific capacitances of up to 34.1 F cm−3 at 50 mV s−1 and a high volumetric power density of 1323 W cm−3. Most importantly, such MCSs exhibited AC line‐filtering performance (−73° at 120 Hz) with a short resistance–capacitance constant of circa 0.83 ms. 相似文献
14.
Hui Qiu Hengyang Cheng Jinku Meng Guan Wu Su Chen 《Angewandte Chemie (International ed. in English)》2020,59(20):7934-7943
Chemical architectures with an ordered porous backbone and high charge transfer are significant for fiber‐shaped supercapacitors (FSCs). However, owing to the sluggish ion kinetic diffusion and storage in compacted fibers, achieving high energy density remains a challenge. An innovative magnetothermal microfluidic method is now proposed to design hierarchical carbon polyhedrons/holey graphene (CP/HG) core–shell microfibers. Owing to highly magnetothermal etching and microfluidic reactions, the CP/HG fibers maintain an open inner‐linked ionic pathway, large specific surface area, and moderate nitrogen active site, facilitating more rapid ionic dynamic transportation and accommodation. The CP/HG FSCs show an ultrahigh energy density (335.8 μWh cm?2) and large areal capacitance (2760 mF cm?2). A self‐powered endurance application with the integration of chip‐based FSCs is designed to profoundly drive the durable motions of an electric car and walking robot. 相似文献
15.
Carbon‐Electrode‐Tailored All‐Inorganic Perovskite Solar Cells To Harvest Solar and Water‐Vapor Energy 下载免费PDF全文
Dr. Jialong Duan Tianyu Hu Dr. Yuanyuan Zhao Prof. Benlin He Prof. Qunwei Tang 《Angewandte Chemie (International ed. in English)》2018,57(20):5746-5749
Moisture is the worst enemy for state‐of‐the‐art perovskite solar cells (PSCs). However, the flowing water vapor within nanoporous carbonaceous materials can create potentials. Therefore, it is a challenge to integrate water vapor and solar energies into a single PSC device. We demonstrate herein all‐inorganic cesium lead bromide (CsPbBr3) solar cells tailored with carbon electrodes to simultaneously harvest solar and water‐vapor energy. Upon interfacial modification and plasma treatment, the bifunctional PSCs yield a maximum power conversion efficiency up to 9.43 % under one sun irradiation according to photoelectric conversion principle and a power output of 0.158 μW with voltage of 0.35 V and current of 0.45 μA in 80 % relative humidity through the flowing potentials at the carbon/water interface. The initial efficiency is only reduced by 2 % on exposing the inorganic PSC with 80 % humidity over 40 days. The successful realization of physical proof‐of‐concept multi‐energy integrated solar cells provides new opportunities of maximizing overall power output. 相似文献
16.
Hengyang Cheng Jinku Meng Guan Wu Su Chen 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(48):17626-17634
Advanced methods, allowing the controllable synthesis of ordered structural nanomaterials with favourable charges transfer and storage, are highly important to achieve ideal supercapacitors with high energy density. Herein, we report a microliter droplet‐based method to synthesize hierarchical‐structured metal–organic framework/graphene/carbon nanotubes hybrids. The confined ultra‐small‐volume reaction, give well‐defined hybrids with a large specific‐surface‐area (1206 m2 g?1), abundant ionic‐channels (narrow pore of 0.86 nm), and nitrogen active‐sites (10.63 %), resulting in high pore‐size utilization (97.9 %) and redox‐activity (32.3 %). We also propose a scalable microfluidic‐blow‐spinning method to consecutively generate nanofibre‐based flexible supercapacitor electrodes with striking flexibility and mechanical strength. The supercapacitors display large volumetric energy density (147.5 mWh cm?3), high specific capacitance (472 F cm?3) and stably deformable energy‐supply. 相似文献
17.
Dr. Burgert Blom Prof. Dr. Matthias Driess Daniel Gallego Prof. Dr. Shigeyoshi Inoue 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(42):13355-13360
A series of unprecedented bis‐silylene titanium(II) complexes of the type [(η5‐C5H5)2Ti(LSiX)2] (L=PhC(NtBu)2; X=Cl, CH3, H) has been prepared using a phosphane elimination strategy. Treatment of the [(η5‐C5H5)2Ti(PMe3)2] precursor ( 1 ) with two molar equivalents of the N‐heterocyclic chlorosilylene LSiCl ( 2 ), results in [(η5‐C5H5)2Ti(LSiCl)2] ( 3 ) with concomitant PMe3 elimination. The presence of a Si? Cl bond in 3 enabled further functionalization at the silicon(II) center. Accordingly, a salt metathesis reaction of 3 with two equivalents of MeLi results in [(η5‐C5H5)2Ti(LSiMe)2] ( 4 ). Similarly, the reaction of 3 with two equivalents of LiBHEt3 results in [(η5‐C5H5)2Ti(LSiH)2] ( 5 ), which represents the first example of a bis‐(hydridosilylene) metal complex. All complexes were fully characterized and the structures of 3 and 4 elucidated by single‐crystal X‐ray diffraction analysis. DFT calculations of complexes 3 – 5 were also carried out to assess the nature of the titanium–silicon bonds. Two σ and one π‐type molecular orbital, delocalized over the Si‐Ti‐Si framework, are observed. 相似文献
18.
Realizing both High Energy and High Power Densities by Twisting Three Carbon‐Nanotube‐Based Hybrid Fibers 下载免费PDF全文
Ye Zhang Yang Zhao Dr. Xunliang Cheng Dr. Wei Weng Jing Ren Xin Fang Yishu Jiang Peining Chen Zhitao Zhang Prof. Yonggang Wang Prof. Huisheng Peng 《Angewandte Chemie (International ed. in English)》2015,54(38):11177-11182
Energy storage devices, such as lithium‐ion batteries and supercapacitors, are required for the modern electronics. However, the intrinsic characteristics of low power densities in batteries and low energy densities in supercapacitors have limited their applications. How to simultaneously realize high energy and power densities in one device remains a challenge. Herein a fiber‐shaped hybrid energy‐storage device (FESD) formed by twisting three carbon nanotube hybrid fibers demonstrates both high energy and power densities. For the FESD, the energy density (50 mWh cm?3 or 90 Wh kg?1) many times higher than for other forms of supercapacitors and approximately 3 times that of thin‐film batteries; the power density (1 W cm?3 or 5970 W kg?1) is approximately 140 times of thin‐film lithium‐ion battery. The FESD is flexible, weaveable and wearable, which offers promising advantages in the modern electronics. 相似文献
19.
Maria Letizia De Marco Dr. Sanaa Semlali Prof. Brian A. Korgel Dr. Philippe Barois Dr. Glenna L. Drisko Dr. Cyril Aymonier 《Angewandte Chemie (International ed. in English)》2018,57(17):4478-4498
Metamaterials have optical properties that are unprecedented in nature. They have opened new horizons in light manipulation, with the ability to bend, focus, completely reflect, transmit, or absorb an incident wave front. Optically active metamaterials in particular could be used for applications ranging from 3D information storage to photovoltaic cells. Silicon (Si) particles are some of the most promising building blocks for optically active metamaterials, with high scattering efficiency coupled to low light absorption for visible frequencies. However, to date ideal Si building blocks cannot be produced by bulk synthesis techniques. The key is to find a synthetic route to produce Si building blocks between 75–200 nm in diameter of uniform size and shape, that are crystalline, have few impurities, and little to no porosity. This Review provides a theoretical background on Si optical properties for metamaterials, an overview of current synthetic methods and gives direction towards the most promising routes to ideal Si particles for metamaterials. 相似文献
20.
Ultrathin Cerium Orthovanadate Nanobelts for High‐Performance Flexible All‐Solid‐State Asymmetric Supercapacitors 下载免费PDF全文
Ultrathin CeVO4 nanobelts were successfully synthesized by a hydrothermal method. The thickness of a single nanobelt is about 2.4 nm, which can effectively shorten the ion diffusion and fasten the charge pathway. More importantly, ultrathin CeVO4 nanobelts and graphene are easily assembled as a flexible all‐solid‐state asymmetric device, which shows a highly flexible property and achieves a maximum energy density of 0.78 mW h cm?3 and a high life cycle of >6000 cycles. 相似文献