首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrational energy transfer (VET) of proteins at cell membrane plays critical roles in controlling the protein functionalities, but its detection is very challenging. By using a surface‐sensitive femtosecond time‐resolved sum‐frequency generation vibrational spectroscopy with infrared pump, the detection of the ultrafast VET in proteins at cell membrane has finally become possible. The vibrational relaxation time of the N−H groups is determined to be 1.70(±0.05) ps for the α‐helix located in the hydrophobic core of the lipid bilayer and 0.9(±0.05) ps for the membrane‐bound β‐sheet structure. The N−H groups with strong hydrogen bonding gain faster relaxation time. By pumping the amide A band and probing amide I band, the vibrational relaxation from N−H mode to C=O mode through two pathways (direct coupling and through intermediate states) is revealed. The ratio of the pathways depends on the NH⋅⋅⋅O=C hydrogen‐bonding strength. Strong hydrogen bonding favors the coupling through intermediate states.  相似文献   

2.
Long‐lived states (LLS) are relaxation‐favored spin population distributions of J‐coupled magnetic nuclei. LLS were measured, along with classical 1H and 15N relaxation rate constants, in amino acids of the N‐terminal Unique domain of the c‐Src kinase, which is disordered in vitro under physiological conditions. The relaxation rates of LLS can probe motions and interactions in biomolecules. LLS of the aliphatic protons of glycines, with lifetimes approximately four times longer than their spin–lattice relaxation times, are reported for the first time in an intrinsically disordered protein domain. LLS relaxation experiments were integrated with 2D spectroscopy methods, further adapting them for studies on proteins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In oriented‐sample (OS) solid‐state NMR of membrane proteins, the angular‐dependent dipolar couplings and chemical shifts provide a direct input for structure calculations. However, so far only 1H–15N dipolar couplings and 15N chemical shifts have been routinely assessed in oriented 15N‐labeled samples. The main obstacle for extending this technique to membrane proteins of arbitrary topology has remained in the lack of additional experimental restraints. We have developed a new experimental triple‐resonance NMR technique, which was applied to uniformly doubly (15N, 13C)‐labeled Pf1 coat protein in magnetically aligned DMPC/DHPC bicelles. The previously inaccessible 1Hα13Cα dipolar couplings have been measured, which make it possible to determine the torsion angles between the peptide planes without assuming α‐helical structure a priori. The fitting of three angular restraints per peptide plane and filtering by Rosetta scoring functions has yielded a consensus α‐helical transmembrane structure for Pf1 protein.  相似文献   

4.
5.
1H‐detected magic‐angle spinning NMR experiments facilitate structural biology of solid proteins, which requires using deuterated proteins. However, often amide protons cannot be back‐exchanged sufficiently, because of a possible lack of solvent exposure. For such systems, using 2H excitation instead of 1H excitation can be beneficial because of the larger abundance and shorter longitudinal relaxation time, T1, of deuterium. A new structure determination approach, “quadruple‐resonance NMR spectroscopy”, is presented which relies on an efficient 2H‐excitation and 2H‐13C cross‐polarization (CP) step, combined with 1H detection. We show that by using 2H‐excited experiments better sensitivity is possible on an SH3 sample recrystallized from 30 % H2O. For a membrane protein, the ABC transporter ArtMP in native lipid bilayers, different sets of signals can be observed from different initial polarization pathways, which can be evaluated further to extract structural properties.  相似文献   

6.
We show that the prediction of 15N relaxation rates in proteins can be extended to systems with anisotropic global rotational diffusion by using a network of coupled rotators (NCR), starting from a three‐dimensional structure. The relaxation rates predicted by this method are confronted in several examples with experiments performed by other groups. The NCR spectral density functions are compared with the results obtained from reduced spectral density mapping. The consequence of the timescales of internal motions on the predicted relaxation rates and the effects of the predicted local anisotropy—present only in the case of anisotropic overall tumbling—on dynamic parameters, are discussed.  相似文献   

7.
Functional motions of 15N‐labeled proteins can be monitored by solution NMR spin relaxation experiments over a broad range of timescales. These experiments however typically take of the order of several days to a week per protein. Recently, NMR chemical exchange saturation transfer (CEST) experiments have emerged to probe slow millisecond motions complementing R1ρ and CPMG‐type experiments. CEST also simultaneously reports on site‐specific R1 and R2 parameters. It is shown here how CEST‐derived R1 and R2 relaxation parameters can be measured within a few hours at an accuracy comparable to traditional relaxation experiments. Using a “lean” version of the model‐free approach S2 order parameters can be determined that match those from the standard model‐free approach applied to 15N R1, R2, and {1H}‐15N NOE data. The new methodology, which is demonstrated for ubiquitin and arginine kinase (42 kDa), should serve as an effective screening tool of protein dynamics from picosecond‐to‐millisecond timescales.  相似文献   

8.
Spatially selective heteronuclear multiple‐quantum coherence (SS HMQC) NMR spectroscopy is developed for solution studies of proteins. Due to “time‐staggered” acquisitioning of free induction decays (FIDs) in different slices, SS HMQC allows one to use long delays for longitudinal nuclear spin relaxation at high repetition rates. To also achieve high intrinsic sensitivity, SS HMQC is implemented by combining a single spatially selective 1H excitation pulse with nonselective 1H 180° pulses. High‐quality spectra were obtained within 66 s for a 7.6 kDa uniformly 13C,15N‐labeled protein, and within 45 and 90 s for, respectively, two proteins with molecular weights of 7.5 and 43 kDa, which were uniformly 2H,13C,15N‐labeled, except for having protonated methyl groups of isoleucine, leucine and valine residues.  相似文献   

9.
Fluorine NMR paramagnetic relaxation enhancement was evaluated as a versatile approach for extracting distance information in selectively F‐labeled proteins. Proof of concept and initial applications are presented for the HIV‐inactivating lectin cyanovirin‐N. Single F atoms were introduced at the 4‐, 5‐, 6‐ or 7 positions of Trp49 and the 4‐position of Phe4, Phe54, and Phe80. The paramagnetic nitroxide spin label was attached to Cys residues that were placed into the protein at positions 50 or 52. 19F‐T2 NMR spectra with different relaxation delays were recorded and the transverse 19F‐PRE rate, 19F‐Γ2, was used to determine the average distance between the F nucleus and the paramagnetic center. Our data show that experimental 19F PRE‐based distances correspond to 0.93 of the 1HN‐PRE distances, in perfect agreement with the gyromagnetic γ19F/γ1H ratio, thereby demonstrating that 19F PREs are excellent alternative parameters for quantitative distance measurements in selectively F‐labeled proteins.  相似文献   

10.
MAS‐NMR was used to study the structure and dynamics at ambient temperatures of the membrane‐anchor domain of YadA (YadA‐M) in a pellet of the outer membrane of E. coli in which it was expressed. YadA is an adhesin from the pathogen Yersinia enterocolitica that is involved in interactions with the host cell, and it is a model protein for studying the autotransport process. Existing assignments were sucessfully transferred to a large part of the YadA‐M protein in the E. coli lipid environment by using 13C‐13C DARR and PDSD spectra at different mixing times. The chemical shifts in most regions of YadA‐M are unchanged relative to those in microcrystalline YadA‐M preparations from which a structure has previously been solved, including the ASSA region that is proposed to be involved in transition‐state hairpin formation for transport of the soluble domain. Comparisons of the dynamics between the microcrystalline and membrane‐embedded samples indicate greater flexibility of the ASSA region in the outer‐membrane preparation at physiological temperatures. This study will pave the way towards MAS‐NMR structure determination of membrane proteins, and a better understanding of functionally important dynamic residues in native membrane environments.  相似文献   

11.
The methyl-13C and the 14N longitudinal relaxation times in acetonitrile, dissolved in a thermotropic liquid crystal are analyzed with a slowly relaxing local structure model. This model gives rise to a frequency dependent relaxation mechanism which explains the relatively short 14N relaxation time compared to the methyl-13C relaxation time.  相似文献   

12.
1H‐detection can greatly improve spectral sensitivity in biological solid‐state NMR (ssNMR), thus allowing the study of larger and more complex proteins. However, the general requirement to perdeuterate proteins critically curtails the potential of 1H‐detection by the loss of aliphatic side‐chain protons, which are important probes for protein structure and function. Introduced herein is a labelling scheme for 1H‐detected ssNMR, and it gives high quality spectra for both side‐chain and backbone protons, and allows quantitative assignments and aids in probing interresidual contacts. Excellent 1H resolution in membrane proteins is obtained, the topology and dynamics of an ion channel were studied. This labelling scheme will open new avenues for the study of challenging proteins by ssNMR.  相似文献   

13.
14.
15.
Direct detection of 13C nucleus can be used as a valuable alternative where 1H detection poses a challenge due to relaxation effects, chemical exchange and poor chemical shift dispersion. In this context, we have designed a suite of 2D 13Cα‐detected hNCA experiments that provide sequential correlations of 13Cα with 15N on one hand and efficient spectroscopic labeling of certain groups of residues, namely, Gly, Ala, Ser and Thr, on the other. These residues act as checkpoints in the sequential walk, which in turn offer new possibilities of backbone assignment of small proteins from a set of 2D experiments, thereby providing great economy in terms of spectrometer time. The direct identification of peptide segments around Gly, Ala, Ser and Thr residues along a protein chain will be highly valuable for deriving important information on sites of ligand binding, phosphorylation, inhibitor/substrate binding, understanding protein folding pathways, comprehending local conformational dynamics etc. without having to obtain complete sequence‐specific assignments, which can be time consuming and at times formidable, especially in large proteins. We have illustratively demonstrated the multifaceted applications of these variants of 2D experiments on ubiquitin and M‐crystallin. We foresee that these 2D hNCA experiments will provide economic and efficient strategies for studying the structure and function of proteins. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In this study, the functional interaction of HPLW peptide with VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) was determined by using fast 15N‐edited NMR spectroscopic experiments. To this aim, 15N uniformly labelled HPLW has been added to Porcine Aortic Endothelial Cells. The acquisition of isotope‐edited NMR spectroscopic experiments, including 15N relaxation measurements, allowed a precise characterization of the in‐cell HPLW epitope recognized by VEGFR2.  相似文献   

17.
We examined conformation and dynamics of a variety of fibrous and membrane proteins by means of the conformation-dependent displacements of 13C nuclear magnetic resonance (NMR) chemical shifts and their relaxation parameters, respectively, as recorded by high-resolution solid-state 13C NMR. Determination of three-dimensional structure of atomic resolution is also briefly described for a simple peptide on the basis of precise measurements of interatomic distances.  相似文献   

18.
KCNE1 is known to modulate the voltage‐gated potassium channel α subunit KCNQ1 to generate slowly activating potassium currents. This potassium channel is essential for the cardiac action potential that mediates a heartbeat as well as the potassium ion homeostasis in the inner ear. Therefore, it is important to know the structure and dynamics of KCNE1 to better understand its modulatory role. Previously, the Sanders group solved the three‐dimensional structure of KCNE1 in LMPG micelles, which yielded a better understanding of this KCNQ1/KCNE1 channel activity. However, research in the Lorigan group showed different structural properties of KCNE1 when incorporated into POPC/POPG lipid bilayers as opposed to LMPG micelles. It is hence necessary to study the structure of KCNE1 in a more native‐like environment such as multi‐lamellar vesicles. In this study, the dynamics of lipid bilayers upon incorporation of the membrane protein KCNE1 were investigated using 31P solid‐state nuclear magnetic resonance (NMR) spectroscopy. Specifically, the protein/lipid interaction was studied at varying molar ratios of protein to lipid content. The static 31P NMR and T1 relaxation time were investigated. The 31P NMR powder spectra indicated significant perturbations of KCNE1 on the phospholipid headgroups of multi‐lamellar vesicles as shown from the changes in the 31P spectral line shape and the chemical shift anisotropy line width. 31P T1 relaxation times were shown to be reversely proportional to the molar ratios of KCNE1 incorporated. The 31P NMR data clearly indicate that KCNE1 interacts with the membrane. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Starting from a polyimido sulfonate the four‐coordinate, N,N′‐chelated CoII complex [Co{(NtBu)3SMe}2] ( 1 ) was synthesized, and its molecular structure was elucidated by single‐crystal X‐ray structural analysis. The acute N‐Co‐N bite angle imposed by the N,N′‐chelating ligand (NtBu)3SMe? leads to pronounced C2v distortion of the tetrahedral coordination environment and thus to high anisotropy of the CoII ion (D≈?58 cm?1), favorable for single‐molecule‐magnet (SMM) properties. Magnetic measurements revealed a high barrier to spin reversal (Ueff=75 cm?1) that gives rise to the observation of slow relaxation of the magnetization in zero field and a hysteresis loop at 2 K for this unique complex.  相似文献   

20.
Zinc thiocyanate complexes have been found to be biologically active compounds. Zinc is also an essential element for the normal function of most organisms and is the main constituent in a number of metalloenzyme proteins. Pyrimidine and aminopyrimidine derivatives are biologically very important as they are components of nucleic acids. Thiocyanate ions can bridge metal ions by employing both their N and S atoms for coordination. They can play an important role in assembling different coordination structures and yield an interesting variety of one‐, two‐ and three‐dimensional polymeric metal–thiocyanate supramolecular frameworks. The structure of a new zinc thiocyanate–aminopyrimidine organic–inorganic compound, (C6H9ClN3)2[Zn(NCS)4]·2C6H8ClN3·2H2O, is reported. The asymmetric unit consist of half a tetrathiocyanatozinc(II) dianion, an uncoordinated 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidinium cation, a 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine molecule and a water molecule. The ZnII atom adopts a distorted tetrahedral coordination geometry and is coordinated by four N atoms from the thiocyanate anions. The ZnII atom is located on a special position (twofold axis of symmetry). The pyrimidinium cation and the pyrimidine molecule are not coordinated to the ZnII atom, but are hydrogen bonded to the uncoordinated water molecules and the metal‐coordinated thiocyanate ligands. The pyrimidine molecules and pyrimidinium cations also form base‐pair‐like structures with an R22(8) ring motif via N—H…N hydrogen bonds. The crystal structure is further stabilized by intermolecular N—H…O, O—H…S, N—H…S and O—H…N hydrogen bonds, by intramolecular N—H…Cl and C—H…Cl hydrogen bonds, and also by π–π stacking interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号