首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Photocatalysts derived from semiconductor heterojunctions that harvest solar energy and catalyze reactions still suffer from low solar‐to‐hydrogen conversion efficiency. Now, MXene (Ti3C2TX) nanosheets (MNs) are used to support the in situ growth of ultrathin ZnIn2S4 nanosheets (UZNs), producing sandwich‐like hierarchical heterostructures (UZNs‐MNs‐UZNs) for efficient photocatalytic H2 evolution. Opportune lateral epitaxy of UZNs on the surface of MNs improves specific surface area, pore diameter, and hydrophilicity of the resulting materials, all of which could be beneficial to the photocatalytic activity. Owing to the Schottky junction and ultrathin 2D structures of UZNs and MNs, the heterostructures could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation. The heterostructure photocatalyst exhibits improved photocatalytic H2 evolution performance (6.6 times higher than pristine ZnIn2S4) and excellent stability.  相似文献   

2.
《中国化学快报》2020,31(10):2809-2813
Due to the relatively sluggish charge carrier separation in metal sulfides, the photocatalytic activity of them is still far lower than expected. Herein, sulfur vacancies and in-plane SnS2/SnO2 heterojunction were successfully introduced into the SnS2 nanosheets through high energy ball-milling. These defective structures were studied by the electron paramagnetic resonance, Raman spectra, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscope analyses. The sulfur vacancies and in-plane heterojunctions strongly accelerate the separation of photoexcited electron-hole pairs, as confirmed by the photoluminescence emission spectra and time-resolved photoluminescence decay spectra. The introduction of sulfur vacancies and in-plane heterojunction in SnS2 nanosheets results in roughly six times higher photodegrading rate for methyl orange and four times higher photocatalytic reduction rate of Cr6+ than those of pure SnS2 nanosheets.  相似文献   

3.
ZnIn2S4 microspheres (ZIS MSs) were for the first time decorated with carbon quantum dots (CQDs) and platinum nanoparticles (NPs) as dual co‐catalysts of for photocatalytic H2 production. The ZIS MSs co‐loaded with CQDs and Pt exhibited a high photocatalytic H2 production rate of 1032.2 μmol h?1 g?1 with an apparent quantum efficiency of 2.2 % (420 nm) in triethanolamine aqueous solution under visible‐light irradiation, which was much higher than the respective photocatalytic rates of pure ZIS, Pt loaded ZIS, and CQDs‐decorated ZIS. Such a great enhancement was attributed to the integrative effect of good crystallization, enhanced light absorption, high electrical conductivity of CQDs, and the vectorial electron transfer from ZIS to CQDs and Pt NPs (ZIS→CQDs→Pt).  相似文献   

4.
Engineering electronic properties by elemental doping is a direct strategy to design efficient catalysts towards CO2 electroreduction. Atomically thin SnS2 nanosheets were modified by Ni doping for efficient electroreduction of CO2. The introduction of Ni into SnS2 nanosheets significantly enhanced the current density and Faradaic efficiency for carbonaceous product relative to pristine SnS2 nanosheets. When the Ni content was 5 atm %, the Ni‐doped SnS2 nanosheets achieved a remarkable Faradaic efficiency of 93 % for carbonaceous product with a current density of 19.6 mA cm?2 at ?0.9 V vs. RHE. A mechanistic study revealed that the Ni doping gave rise to a defect level and lowered the work function of SnS2 nanosheets, resulting in the promoted CO2 activation and thus improved performance in CO2 electroreduction.  相似文献   

5.
《中国化学快报》2023,34(4):107726
30% FeCN/ZIS (30% Fe doped g-C3N4 composited ZnIn2S4) was synthesized by a simple water bath method, via in-situ growth of abundant well-dispersed ZnIn2S4 nanosheets on the Fe doped g-C3N4 surface. Experimental results showed the optimized 30% FeCN/ZIS achieved the best photoreduction of Cr(VI) performance within a wide pH range, which was 9.5 times and 700 times higher than that of pure ZnIn2S4 and 30% FeCN (Fe doped g-C3N4). This is due to the intense synergy between the Fe-Nx bond and close interface contact produces a high-speed charge transfer channel, thus significantly improving the efficiency of optical carrier separation and migration. Meanwhile, UV-vis diffuse reflection spectra and photoluminescence spectroscopy showed that iron doping significantly narrowed the bandgap of g-C3N4, preventing electron-hole pair recombination. Further, the microstructures and charge separation properties were analyzed by scanning electron microscope, Photoluminescence Spectroscopy and time-resolved photoluminescence, which revealed the structure-activity relationship of composite structure and the synergistic mechanism of each functional component. This research should provide a viable technique for creating composites with high photocatalytic activity for the treatment of chromium-containing wastewater.  相似文献   

6.
Accelerating the separation efficiency of photoexcited electron-hole pairs with the help of highly active co-catalysts has proven to be a promising approach for improving photocatalytic activity. Thus far, the most developed co-catalysts for semiconductor-based photocatalysis are inorganic materials; the employment of a specific organic molecule as a co-catalyst for photocatalytic hydrogen evolution and pollutant photodegradation is rare and still remains a challenging task. Herein, we report on the use of an organic molecule, oxamide (OA), as a novel co-catalyst to enhance electron-hole separation, photocatalytic H2 evolution, and dye degradation over TiO2 nanosheets. OA-modified TiO2 samples were prepared by a wet chemical route and demonstrated improved light absorption in the visible-light region and more efficient charge transport. The photocatalytic performance of H2 evolution from water splitting and rhodamine B (RhB) degradation for an optimal OA-modified TiO2 photocatalyst reached 2.37 mmol g-1 h-1 and 1.43 × 10?2 min?1, respectively, which were 2.4 and 3.8 times higher than those of pristine TiO2, respectively. A possible mechanism is proposed, in which the specific π-conjugated structure of OA is suggested to play a key role in the enhancement of the charge transfer and catalytic capability of TiO2. This work may provide advanced insight into the development of a variety of metal-free organic molecules as functional co-catalysts for improved solar-to-fuel conversion and environmental remediation.  相似文献   

7.
Based on the photoinduced photothermal, photoelectric, and photocatalytic effects of black phosphorus (BP) nanosheets, a BP‐PAO fiber with enhanced uranium extraction capacity and high antibiofouling activity is fabricated by compositing BP nanosheets into polyacrylamidoxime (PAO). The photothermal effect increases the coordination interaction between UO22+ and the functional amidoxime group, and the photoelectric effect produces the surface positive electric field that exhibits electrostatic attraction to the negative [UO2(CO3)3]4?, which all increase the capacity for uranium adsorption. The photocatalytic effect endows the adsorbent with high antibiofouling activity by producing biotoxic reactive oxygen species. Owing to these three photoinduced effects, the photoinduced BP‐PAO fiber shows a high uranium adsorption capacity of 11.76 mg g?1, which is 1.50 times of the PAO fiber, in bacteria‐containing natural seawater.  相似文献   

8.
Herein, a novel broken case‐like carbon‐doped g‐C3N4 photocatalyst was obtained via a facile one‐pot pyrolysis and cost‐effective method using glyoxal‐modified melamine as a precursor. The obtained carbon/g‐C3N4 photocatalyst showed remarkable enhanced photocatalytic activity in the degradation of gaseous benzene compared with that of pristine g‐C3N4 under visible light. The pseudo‐first‐order rate constant for gaseous benzene degradation on carbon/g‐C3N4 was 0.186 hr?1, 5.81 times as large as that of pristine g‐C3N4. Furthermore, a possible photocatalytic mechanism for the improved photocatalytic performance over carbon/g‐C3N4 nanocomposites was proposed.  相似文献   

9.
To enhance the photocatalytic activity under solar light, highly ordered TiO2 nanotube arrays (TNAs) film with anatase phase was fabricated on glass and successfully doped with carbon at various temperatures of 450–550 °C. The characterization results indicate that, after carbon doping, the TNAs still remained nanotubular structure with anatase phase. But their optical response shifted from UV to the visible light region and the recombination of photogenerated carriers was suppressed effectively. It is more important that the carbon-doped TNAs/glass (C-TNAs) samples exhibited high solar light photocatalytic activity, and 68%, 61% and 56% MO was photodegraded in 150 min by the C-TNAs calcined at 550, 500 and 450 °C, respectively. Especially, the apparent reaction rate constant of C-TNAs calcined at 550 (k, 0.065 min−1) with the highest activity is 3.6 times that of pristine anatase TNAs (k, 0.018 min−1). It is clear that carbon doping enhanced the photocatalytic activity under sunlight at optimized annealing temperature. The efficient activity could be attributed to the synergetic effects of strong visible light absorption, good crystallization, large surface, and enhanced separation of photoinduced carriers.  相似文献   

10.
李婧宇  祁明雨  徐艺军 《催化学报》2022,43(4):1084-1091
光催化析氢技术被认为是解决化石能源紧缺和环境污染问题的有效途径之一.在传统的光解水体系中,析氧半反应因涉及到复杂的四电子转移和O=O双键形成,成为光催化水分解的决速步骤.光生空穴牺牲试剂的引入虽然可以在一定程度上提高体系的光催化效率,但同时造成了光生空穴氧化能力的浪费,且增加了系统成本.相比之下,构建由光催化析氢和选择...  相似文献   

11.
High aspect ratio cobalt doped ZnO nanowires showing strong photocatalytic activity and moderate ferromagnetic behaviour were successfully synthesized using a solvothermal method and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), vibrating sample magnetometry (VSM) and UV–visible absorption spectroscopy. The photocatalytic activities evaluated for visible light driven degradation of an aqueous methylene orange (MO) solution were higher than for Co doped ZnO nanoparticles at the same doping level and synthesized by the same synthesis route. The rate constant for MO visible light photocatalytic degradation was 1.9·10−3 min−1 in case of nanoparticles and 4.2·10−3 min−1 in case of nanowires. We observe strongly enhanced visible light photocatalytic activity for moderate Co doping levels, with an optimum at a composition of Zn0.95Co0.05O. The enhanced photocatalytic activities of Co doped ZnO nanowires were attributed to the combined effects of enhanced visible light absorption at the Co sites in ZnO nanowires, and improved separation efficiency of photogenerated charge carriers at optimal Co doping.  相似文献   

12.
《化学:亚洲杂志》2017,12(19):2597-2603
In this paper, an Ag‐doped WO3 (and MoO3) composite has been prepared by following a simple micelle‐directed method and high‐temperature sintering route. The as‐prepared samples were characterized by X‐ray diffraction, inductively coupled plasma, transmission electron microscopy, X‐ray photoelectron spectroscopy, UV/Vis diffuse reflectance spectroscopy, Brunauer–Emmett–Teller, photoluminescence spectroscopy, and electrochemical impedance spectroscopy techniques. The photocatalytic experiments reveal that their oxygen‐production rates are up to 95.43 μmol (75.45 μmol) for Ag‐doped WO3 (MoO3), which is 9.5 (7.3) times higher than that of pure WO3: 9.012 μmol (MoO3: 9.00 μmol) under visible‐light illumination (λ ≥420 nm), respectively. The improvement of their photocatalytic activity is attributed to the enhancement of their visible‐light absorption and the separation efficiency of photogenerated carriers by Ag doping. Moreover, Ag‐doped WO3 (MoO3) also shows excellent adsorption of rhodamine B (RhB) and methylene blue (MB) in aqueous solution, with maximum adsorption capacities towards RhB and MB of 822 and 820 mg g−1 for Ag‐doped WO3, and 642 and 805 mg g−1 for Ag‐doped MoO3, respectively.  相似文献   

13.
Samarium and nitrogen co‐doped Bi2WO6 nanosheets were successfully synthesized by using a hydrothermal method. The crystal structures, morphology, elemental compositions, and optical properties of the prepared samples were investigated. The incorporation of samarium and nitrogen ions into Bi2WO6 was proved by X‐ray diffraction, energy dispersive X‐ray spectroscopy, and X‐ray photoelectron spectroscopy. UV/Vis diffuse reflectance spectroscopy indicated that the samarium and nitrogen co‐doped Bi2WO6 possessed strong visible‐light absorption. Remarkably, the samarium and nitrogen co‐doped Bi2WO6 exhibited higher photocatalytic activity than single‐doped and pure Bi2WO6 under visible‐light irradiation. Radical trapping experiments indicated that holes (h+) and superoxide radicals ( . O2?) were the main active species. The results of photoluminescence spectroscopy and photocurrent measurements demonstrated that the recombination rate of the photogenerated electrons and holes pairs was greatly depressed. The enhanced activity was attributed to the synergistic effect of the in‐built Sm3+/Sm2+ redox pair centers and the N‐doped level. The mechanism of the excellent photocatalytic activity of Sm‐N‐Bi2WO6 is also discussed.  相似文献   

14.
The reduced graphene oxide‐Bi2WO6 (rGO‐BWO) photocatalysts with the different RF/O values (molar ratio of the F molar mass and the O's molar mass of Bi2WO6) had been successfully synthesized via one‐step hydrothermal method. The F‐doped rGO‐BWO samples were characterized by X‐ray diffraction patterns (XRD), field‐emission scanning electron microscopy (FE‐ESEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller surface area (BET), X‐ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectra (DRS). The results indicate that F? ions had been successfully doped into rGO‐BWO samples. With the increasing of the RF/O values from 0 to 2%, the evident change of the morphology and the absorption edges of F‐doped rGO‐BWO samples and the photocatalytic activities had been enhanced. Moreover, the photocatalytic activity of F‐doped rGO‐BWO with RF/O = 0.05 were better than rGO‐BWO and the other F‐doped rGO‐BWO under 500 W Xe lamp light irradiation. The enhanced photocatalytic activity can be attributed to the morphology of the intact microsphere that signify the bigger specific surface area for providing more possible reaction sites for the adsorption–desorption equilibrium of photocatalytic reaction, the introduction of F? ions that may cause the enhancement of surface acidity and creation of oxygen vacancies under visible light irradiation, the narrower band gap which means needing less energy for the electron hole pair transition.  相似文献   

15.
Although TiO2 is an efficient photocatalyst, its large band gap limits its photocatalytic activity only to the ultraviolet region. An experimentally synthesized ternary Fe/C/S‐doped TiO2 anatase showed improved visible light photocatalytic activity. However, a theoretical study of the underlying mechanism of the enhanced photocatalytic activity and the interaction of ternary Fe/C/S‐doped TiO2 has not yet been investigated. In this study, the defect formation energy, electronic structure and optical property of TiO2 doped with Fe, C, and S are investigated in detail using the density functional theory + U method. The calculated band gap (3.21 eV) of TiO2 anatase agree well with the experimental band gap (3.20 eV). The defect formation energy shows that the co‐ and ternary‐doped systems are thermodynamically favorable under oxygen‐rich condition. Compared to the undoped TiO2, the absorption edge of the mono‐, co‐, and ternary‐doped TiO2 is significantly enhanced in the visible light region. We have shown that ternary doping with C, S, and Fe induces a clean band structure without any impurity states. Moreover, the ternary Fe/C/S‐doped TiO2 exhibit an enhanced photocatalytic activity, a smaller band gap and negative formation energy compared to the mono‐ and co‐doped systems. Moreover, the band edges of Fe/C/S‐doped TiO2 align well with the redox potentials of water, which shows that the ternary Fe/C/S‐doped TiO2 is promising photocatalysts to split water into hydrogen and oxygen. These findings rationalize the available experimental results and can assist the design of TiO2‐based photocatalyst materials.  相似文献   

16.
Fluorine‐doped hierarchical porous single‐crystal rutile TiO2 nanorods have been synthesized through a silica template method, in which F? ions acts as both n‐type dopants and capping agents to make the isotropic growth of the nanorods. The combination of high crystallinity, abundant surface reactive sites, large porosity, and improved electronic conductivity leads to an excellent photoelectrochemical activity. The photoanode made of F‐doped porous single crystals displays a remarkably enhanced solar‐to‐hydrogen conversion efficiency (≈0.35 % at ?0.33 V vs. Ag/AgCl) under 100 mW cm?2 of AM=1.5 solar simulator illumination that is ten times of the pristine solid TiO2 single crystals.  相似文献   

17.
Heteroatom doping is an effective method to adjust the electrochemical behavior of carbonaceous materials. In this work, boron‐doped, carbon‐coated SnO2/graphene hybrids (BCTGs) were fabricated by hydrothermal carbonization of sucrose in the presence of SnO2/graphene nanosheets and phenylboronic acid or boric acid as dopant source and subsequent thermal treatment. Owing to their unique 2D core–shell architecture and B‐doped carbon shells, BCTGs have enhanced conductivity and extra active sites for lithium storage. With phenylboronic acid as B source, the resulting hybrid shows outstanding electrochemical performance as the anode in lithium‐ion batteries with a highly stable capacity of 1165 mA h g?1 at 0.1 A g?1 after 360 cycles and an excellent rate capability of 600 mA h g?1 at 3.2 A g?1, and thus outperforms most of the previously reported SnO2‐based anode materials.  相似文献   

18.
《化学:亚洲杂志》2017,12(20):2727-2733
Hydrogen production by catalytic water splitting using sunlight holds great promise for clean and sustainable energy source. Despite the efforts made in the past decades, challenges still exist in pursuing solid catalysts with light‐harvesting capacity, large surface areas and efficient utilities of the photogenerated carrier, at the same time. Here, a multiple structure design strategy leading to highly enhanced photocatalytic performance on hydrogen production from water splitting in Dion–Jacobson perovskites KCa2Nan ‐3Nbn O3n +1 is described. Specifically, chemical doping (N/Nb4+) of the parent oxides via ammoniation improved the ability of sunlight harvesting efficiently; subsequent liquid exfoliation of the doped perovskites yielded ultrathin [Ca2Nan ‐3Nbn O3n +1] nanosheets with greatly increased surface areas. Significantly, the maximum hydrogen evolution appears in the n =4 nanosheets, which suggests the most favorable thickness for charge separation in such perovskite‐type catalysts. The optimized black N/Nb4+‐[Ca2NaNb4O13] nanosheets show greatly enhanced photocatalytic performance, as high as 973 μmol h−1 with Pt loading, on hydrogen evolution from water splitting. As a proof‐of‐concept, this work highlights the feasibility of combining various chemical strategies towards better catalysts and precise thickness control of two‐dimensional materials.  相似文献   

19.
Mn‐doped SrMoO4 nanocrystals were synthesized by thermal decomposition of metal–organic salt in an organic solvent with the doping content in the range 0–12 mol%. The structures, morphologies and optical properties were characterized using various techniques. The results suggest that Mo sites in the SrMoO4 lattice are substituted by the Mn dopant, the adsorption bands are found to be shifted toward the visible light region and the band gap becomes narrower correspondingly. The photocatalytic performance of the as‐synthesized product was determined using the degradation of methylene blue by visible light irradiation. The photocatalytic performance is enhanced with Mn doping, and the optimal degradation rate is 85% in 140 min for 5 mol% Mn doping. The enhanced photocatalytic activity with Mn doping may be ascribed to the energy band adjustment and effective photogenerated electron–hole separation caused by the Mn doping. A possible photocatalytic mechanism is also discussed.  相似文献   

20.
Surface oxygen vacancy defects of mesoporous CeO2 nanosheets assembled microspheres(D-CeO2) are engineered by polymer precipitation, hydrothermal and surface hydrogenation strategies. The resultant D-CeO2 with a main pore diameter of 9.3 nm has a large specific surface area(~102.3 m2/g) and high thermal stability. The mesoporous nanosheets assembled microsphere structure prevents the nanosheets from aggregation, which is beneficial to effective mass tr...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号