首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ruthenium‐catalyzed meta‐C?H activation of arenes at room temperature is reported to proceed under blue‐light irradiation. A variety of heteroarenes are compatible with this photochemical process, which leads to the corresponding meta C?C coupling products in good to very good yields. Initial mechanistic studies suggest a single‐electron transfer process occurs between a photoexcited RuII‐cyclometalated complex and alkyl halides, enabling meta‐C?H functionalization reaction via carbon‐centered radicals.  相似文献   

2.
A palladium‐catalyzed cascade reaction based on the trapping of transient alkyl–PdII intermediates with arynes encompassing a C?H activation step has been developed. This synthetic pathway gives rise to hetero‐spirocyclic scaffolds containing a biaryl motif, and opens up new synthetic strategies in the design of cascade reactions since it gathers several aspects of Pd chemistry, i.e., intra‐ and intermolecular carbopalladation of unsaturated species, C?H activation and C?C coupling processes.  相似文献   

3.
An efficient Cp*CoIII‐catalyzed C8‐dienylation of quinoline‐N‐oxides was achieved by employing allenes bearing leaving groups at the α‐position as the dienylating agents. The reaction proceeds by CoIII‐catalyzed C?H activation of quinoline‐N‐oxides and regioselective migratory insertion of the allene followed by a β‐oxy elimination, leading to overall dienylation. Site‐selective C?H activation was achieved with excellent selectivity under mild reaction conditions, and 30 mol % of a NaF additive was found to be crucial for the efficient dienylation. The methodology features high stereoselectivity, mild reaction conditions, and good functional‐group tolerance. C8‐alkenylation of quinoline‐N‐oxides was achieved in the case of allenes devoid of leaving groups as coupling partners. Furthermore, gram‐scale preparation and preliminary mechanistic experiments were carried out to gain insights into the reaction mechanism.  相似文献   

4.
A CoII/porphyrinate‐based macrocycle in the presence of a 3,5‐diphenylpyridine axial ligand functions as an endotopic ligand to direct the assembly of [2]rotaxanes from diazo and styrene half‐threads, by radical‐carbene‐transfer reactions, in excellent 95 % yield. The method reported herein applies the active‐metal‐template strategy to include radical‐type activation of ligands by the metal‐template ion during the organometallic process which ultimately yields the mechanical bond. A careful quantitative analysis of the product distribution afforded from the rotaxane self‐assembly reaction shows that the CoII/porphyrinate subunit is still active after formation of the mechanical bond and, upon coordination of an additional diazo half‐thread derivative, promotes a novel intercomponent C?H insertion reaction to yield a new rotaxane‐like species. This unexpected intercomponent C?H insertion illustrates the distinct reactivity brought to the CoII/porphyrinate catalyst by the mechanical bond.  相似文献   

5.
The site‐selective functionalization of unactivated C(sp3)?H bonds remains one of the greatest challenges in organic synthesis. Herein, we report on the site‐selective δ‐C(sp3)?H alkylation of amino acids and peptides with maleimides via a kinetically less favored six‐membered palladacycle in the presence of more accessible γ‐C(sp3)?H bonds. Experimental studies revealed that C?H bond cleavage occurs reversibly and preferentially at γ‐methyl over δ‐methyl C?H bonds while the subsequent alkylation proceeds exclusively at the six‐membered palladacycle that is generated by δ‐C?H activation. The selectivity can be explained by the Curtin–Hammett principle. The exceptional compatibility of this alkylation with various oligopeptides renders this procedure valuable for late‐stage peptide modifications. Notably, this process is also the first palladium(II)‐catalyzed Michael‐type alkylation reaction that proceeds through C(sp3)?H activation.  相似文献   

6.
A highly efficient palladium‐catalyzed disilylation reaction of aryl halides through C?H activation has been developed for the first time. The reaction has broad substrate scope. A variety of aryl halides can be disilylated by three types of C?H activation, including C(sp2)?H, C(sp3)?H, and remote C?H activation. In particular, the reactions are also unusually efficient. The yields are essentially quantitative in many cases, even in the presence of less than 1 mol % catalyst and 1 equivalent of the silylating reagent under relatively mild conditions. The disilylated biphenyls can be converted into disiloxane‐bridged biphenyls.  相似文献   

7.
A new sulfinate salt‐mediated radical relay for the completion of C(sp3)?H bond indenylation of cyclic ethers with readily available 2‐alkynylbenzonitriles by combining silver/tert‐butyl peroxide (TBHP) was established, providing a wide range of 3‐alkylated 1‐indenones with generally good yields. Interestingly, the current reaction system can tolerate an S‐centered radical and a C‐centered radical in one pot, in which the S‐centered radical promotes the formation of the C‐centered radical to induce a radical cascade without disturbing the reaction process. A reaction mechanism is also proposed based on control experiments.  相似文献   

8.
A new mode of activation of an imine via a rare aza‐substituted π‐allyl complex is described. Palladium‐catalyzed C(sp3)? H activation of the N‐allyl imine and the subsequent nucleophilic attack by the α‐alkyl cyanoester produced the 1‐aza‐1,3‐diene as the sole regioisomer. In contrast, nucleophilic attack by the α‐aryl cyanoester exclusively delivered the 2‐aza‐1,3‐diene, which was employed in an inverse‐electron‐demand Diels–Alder reaction for heterobiaryl synthesis.  相似文献   

9.
Cyclopropane rings are a prominent structural motif in biologically active molecules. Enantio‐ and diastereoselective construction of cyclopropanes through C?H activation of arenes and coupling with readily available cyclopropenes is highly appealing but remains a challenge. A dual directing‐group‐assisted C?H activation strategy was used to realize mild and redox‐neutral RhIII‐catalyzed C?H activation and cyclopropylation of N‐phenoxylsulfonamides in a highly enantioselective, diastereoselective, and regioselective fashion with cyclopropenyl secondary alcohols as a cyclopropylating reagent. Synthetic applications are demonstrated to highlight the potential of the developed method. Integrated experimental and computational mechanistic studies revealed that the reaction proceeds via a RhV nitrenoid intermediate, and Noyori‐type outer sphere concerted proton‐hydride transfer from the secondary alcohol to the Rh=N bond produces the observed trans selectivity.  相似文献   

10.
A series of 2,4,6‐triarylphosphinines were prepared and investigated in the base‐assisted cyclometalation reaction using [Cp*IrCl2]2 (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) as the metal precursor. Insight in the mechanism of the C? H bond activation of phosphinines as well as in the regioselectivity of the reaction was obtained by time‐dependent 31P{1H} NMR spectroscopy. At room temperature, 2,4,6‐triarylphosphinines instantaneously open the Ir‐dimer and coordinate in an η1‐fashion to the metal center. Upon heating, a dissociation step towards free ligand and an Ir‐acetate species is observed and proven to be a first‐order reaction with an activation energy of ΔEA=56.6 kJ mol?1 found for 2,4,6‐triphenylphosphinine. Electron‐donating substituents on the ortho‐phenyl groups of the phosphorus heterocycle facilitate the subsequent cyclometalation reaction, indicating an electrophilic C? H activation mechanism. The cyclometalation reaction turned out to be very sensitive to steric effects as even small substituents can have a large effect on the regioselectivity of the reaction. The cyclometalated products were characterized by means of NMR spectroscopy and in several cases by single‐crystal X‐ray diffraction. Based on the observed trends during the mechanistic investigation, a concerted base‐assisted metalation–deprotonation (CMD) mechanism, which is electrophilic in nature, is proposed.  相似文献   

11.
A general and user‐friendly synthesis of β‐lactams is reported that makes use of Pd0‐catalyzed carbamoylation of C(sp3)−H bonds, and operates under stoichiometric carbon monoxide in a two‐chamber reactor. This reaction is compatible with a range of primary, secondary and activated tertiary C−H bonds, in contrast to previous methods based on C(sp3)−H activation. In addition, the feasibility of an enantioselective version using a chiral phosphonite ligand is demonstrated. Finally, this method can be employed to synthesize valuable enantiopure free β‐lactams and β‐amino acids.  相似文献   

12.
A palladium‐catalyzed C? H arylation of aliphatic amines with arylboronic esters is described, proceeding through a four‐membered‐ring cyclopalladation pathway. Crucial to the successful outcome of this reaction is the action of an amino‐acid‐derived ligand. A range of hindered secondary amines and arylboronic esters are compatible with this process and the products of the arylation can be advanced to complex polycyclic molecules by sequential C? H activation reactions.  相似文献   

13.
Manganese‐catalyzed C?H bond activation chemistry is emerging as a powerful and complementary method for molecular functionalization. A highly reactive seven‐membered MnI intermediate is detected and characterized that is effective for H‐transfer or reductive elimination to deliver alkenylated or pyridinium products, respectively. The two pathways are determined at MnI by judicious choice of an electron‐deficient 2‐pyrone substrate containing a 2‐pyridyl directing group, which undergoes regioselective C?H bond activation, serving as a valuable system for probing the mechanistic features of Mn C?H bond activation chemistry.  相似文献   

14.
The first example of PdII‐catalyzed γ‐C(sp3)?H functionalization of aliphatic and benzoheteroaryl aldehydes has been developed using a transient ligand and an external ligand, concurrently. A wide array of γ‐arylated aldehydes were readily accessed without preinstalling internal directing groups. The catalytic mechanism was studied by performing deuterium‐labelling experiments, which indicated that the γ‐C(sp3)?H bond cleavage is the rate‐limiting step during the reaction process. This reaction could be performed on a gram scale, and also demonstrated its potential application in the synthesis of new mechanofluorochromic materials with blue‐shifted mechanochromic properties.  相似文献   

15.
Despite a growing interest in CHF2 in medicinal chemistry, there is a lack of efficient methods for the insertion of CHF18F into druglike compounds. Herein described is a photoredox flow reaction for 18F‐difluoromethylation of N‐heteroaromatics that are widely used in medicinal chemistry. Following the two‐step synthesis for a new 18F‐difluoromethylation reagent, the photoredox reaction is completed within two minutes and proceeds by C?H activation, circumventing the need for pre‐functionalization of the substrate. The method is operationally simple and affords straightforward access to radiolabeled N‐heteroaromatics with high molar activity suitable for biological in vivo studies and clinical application.  相似文献   

16.
A coupling reaction of N‐phenoxyacetamides with N‐tosylhydrazones or diazoesters through RhIII‐catalyzed C? H activation is reported. In this reaction, ortho‐alkenyl phenols were obtained in good yields and with excellent regio‐ and stereoselectivity. Rh–carbene migratory insertion is proposed as the key step in the reaction mechanism.  相似文献   

17.
A computational study on the detailed mechanism and stereoselectivity of the chiral phosphine‐catalyzed C(sp2)? H activation/[3 + 3] annulation between Morita–Baylis–Hillman (MBH) carbonates and C,N‐cyclic azomethine imines has been performed. Generally, the catalytic cycle consists of two stages, that is, C(sp2)? H activation companied by the dissociation of the t‐BuO group forming phosphonium enolate, and [3 + 3] cycloaddition process followed by regeneration of the catalyst. The calculated results indicate that C(sp2)? H activation is rate‐determining while [3 + 3] cycloaddition is stereoselectivity‐determining. Furthermore, the advantageous hydrogen bond interactions and less steric hindrance in the RR configurational C? C bond forming transition states should be responsible for the favorability of RR‐configured product among the four possible products. The special role of the organocatalyst was also identified by natural bond orbital (NBO) and global reactivity index (GRI) analyses. The mechanistic insights obtained in the present study should be useful for understanding the novel organocatalytic C(sp2)? H activation and cycloaddition cascade reaction of MBH carbonates, and thus provide valuable clues on rational design of efficient organocatalysts for the C(sp2)? H activation/functionalizations.  相似文献   

18.
[Cp*RhIII]‐catalyzed C? H activation of arenes assisted by an oxidizing N? O or N? N directing group has allowed the construction of a number of hetercycles. In contrast, a polar N? O bond is well‐known to undergo O‐atom transfer (OAT) to alkynes. Despite the liability of N? O bonds in both C? H activation and OAT, these two important areas evolved separately. In this report, [Cp*RhIII] catalysts integrate both areas in an efficient redox‐neutral coupling of quinoline N‐oxides with alkynes to afford α‐(8‐quinolyl)acetophenones. In this process the N? O bond acts as both a directing group for C? H activation and as an O‐atom donor.  相似文献   

19.
Heteroarenes are important structural motif in functional molecules. A MnI‐catalyzed 1,2‐diheteroarylation of allenes via a C−H activation/Smiles rearrangement cascade is presented. The reaction occurred under additive‐free or even solvent‐free conditions, which allowed the creation of two C−C and one C−N bonds in a single operation. A series of structurally diverse bicyclic or tricyclic compounds bearing an exocyclic double bond were constructed in good to excellent efficiency. The decarboxylative ring‐opening of the products led to the facile synthesis of vicinal biheteroaryls. Synthetic applications were demonstrated and preliminary mechanistic studies were conducted.  相似文献   

20.
A ligand‐promoted RhIII‐catalyzed C(sp2)?H activation/thiolation of benzamides has been developed. Using bidentate mono‐N‐protected amino acid ligands led to the first example of RhIII‐catalyzed aryl thiolation reactions directed by weakly coordinating directing amide groups. The reaction tolerates a broad range of amides and disulfide reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号