共查询到19条相似文献,搜索用时 82 毫秒
1.
分类是数据挖掘研究的主要内容之一,将微粒群算法应用于分类中,主要用于分类规则的提取,给出了适用于微粒群算法的分类规则编码,并构造了适应值函数,采用UCI标准数据集进行实验,结果表明算法的有效性。 相似文献
2.
3.
传统的股票关联预测主要是通过数据分析与简单的回归预测的方法来进行,这种技术无法全面的对多只股票之间的变化关联进行分析预测,造成了股票走势的预测准确率不高,时效性不强的缺点.本文提出协同微粒群的股票关联规则挖掘方法,对股票属性数据进行特殊的预处理.将PSO粒子群优化的高度智能搜索技术与关联挖掘优点结合进行股票的关联预测,将粒子群划分为不同功能的粒子群进行关联分析.实验仿真结果证明,本文的算法较传统的关联规则挖据算法和PSO粒子群优化算法在准确率与挖掘速率上有很大的提高,能有效反应股票的实时变化,对实际的股票预测有很强的指导意义. 相似文献
4.
随着全球信息化的出现,手工分类索引已经不适用于大规模信息的处理,自动分类的研究得到迅速发展。K-近邻法是具有一定效率的自动分类算法。本文将其与智能优化技术结合,用于基于机器学习的文本分类过程中。实验结果表明,对于庞大的文档集合分类,该算法提高了分类的速度和精度。 相似文献
5.
6.
在研究微粒群算法生物特征的基础上,提出了一种异步随机微粒群算法——ASPSO.该方法是在微粒的进化过程中,采用异步模式使全局最好位置信息以异步方式在种群中传播。从理论上证明了ASPSO与同步模式微粒群算法SPSO相比较具有更快的局部收敛速度,并对四个经典测试函数进行了仿真测试,测试结果表明:与SPSO相比,ASPSO算法具有更快的收敛速度。 相似文献
7.
针对关联分类算法产生的规则普遍存在分类器分类精度、效率低的问题,提出了一种提取有效规则的关联分类算法--ACDER算法.首先定义了剩余支持度和剩余置信度,然后通过计算规则剩余支持度和剩余置信度建立了分类器并进行剪枝,以达成对分类尽量少且最有效的规则构成分类器,确保分类器中不存在任何冗余规则和冲突规则.在8个数据集上的测试结果表明,所提算法的平均分类精度比关联规则算法提高了4.15%,而在所有数据源分类器上的规则数却减少了54%. 相似文献
8.
提出一种两群替代微粒群优化算法(TSSPSO),并对算法参数进行分析和对算法方程进行修正。该方法将微粒分成飞行方向不同的两分群,其中一分群微粒朝着最优微粒飞行,另一分群微粒朝着相反方向飞行;飞行时,每一微粒不仅受到微粒本身飞行经验和本分群最优微粒的影响,还受到全群最优微粒的影响。搜索时,每一次迭代均以一定的替代率用一分群中若干优势微粒取代另一分群中相同数目的劣势微粒。对4种常用函数的优化问题进行测试并进行比较,结果表明:两群替代微粒群优化算法比基本微粒群优化算法更容易找到全局最优解,优化效率和优化性能明显提高。将两群替代微粒群优化算法用于常压塔汽油干点软测量,建立基于两群替代微粒群优化算法的汽油干点神经网络软测量模型,通过与实际工业数据的比较,表明基于两群替代微粒群神经网络的软测量模型精度高、性能好。 相似文献
9.
10.
11.
为了从网络入侵数据提取有意义的信息,分析了网络入侵数据的特点,设计了一种实数的编码方式,给出了一种基于粒子群优化的分类规则挖掘方法,并应用于误用检测系统中.仿真实验结果表明,提出的方法是有效的和可行的. 相似文献
12.
针对分类数据集合线性不可分的问题,改进了支持向量机(SVM)的分类方法,构建新的分类决策函数和高斯核函数.在支持向量机关键参数的优化环节,采用粒子群算法对惩罚参数和高斯参数进行优化,设计便于操作的优化流程,并针对Iris数据集合展开实验研究.结果表明:相比于基于遗传算法优化的SVM方法,所提出的方法执行速度快、分类准确率高. 相似文献
13.
14.
为了克服标准粒子群算法在搜索后期中易陷入局部最优等缺点,提出了一种改进的小生境粒子群算法.通过将小生境技术引入标准粒子群算法中,保证了种群的多样性;同时在惯性权重中引入余弦函数,更改算法中认知项和社会项加速因子,加入迭代因素,并在位置更新策略中加入了飞行时间因子等策略,使其更加贴近粒子群算法的客观规律.通过对5个非线性基准测试函数进行数值仿真实验对比,结果表明改进的小生境粒子群算法在非线性的复杂函数优化中具有更好的寻优能力,避免了"早熟"现象,同时还具备收敛速度快,搜索精度高等特点. 相似文献
15.
以福建省37种针阔树种的10个防火性能指标为数据来源,运用粒子群聚类算法将树种分成6类.结果 表明:分类达到了较理想的效果,总体符合生产实际情况.与蚁群聚类算法比较,粒子群聚类算法应用于防火树种分析能够获取较优的适应值聚类、较大的类间距离和较小的类内距离.粒子群聚类算法便于应用,可为林业科学中相关研究提供一种新手段. 相似文献
16.
粒子群算法在求解优化问题中的应用 总被引:15,自引:2,他引:15
粒子群优化(PSO:Particle Swarm Optimization)算法是一种新兴的优化技术,其思想来源于人工生命和进化计算理论.PSO算法通过粒子追随自己找到的最好解和整个群体的最好解完成优化.为了避免PSO算法在求解最优化问题时陷入在局部最优及提高PSO算法的收敛速度,提出了对PSO算法增加更新概率.对无约束和有约束最优化问题分别设计了基于PSO算法的不同的求解方法和测试函数,并对PSO算法求解多目标优化问题进行了研究.仿真实验表明了改进的PSO算法求解最优化问题时的有效性. 相似文献
17.
18.
针对粒子群算法易于坠入局部最优、早熟而造成求解成功率不高的问题引入回退算法的思想,提出一种用于求解工程约束的改进粒子群算法。对优化过程中不合约束的粒子不是简单抛弃,而使其回退到该粒子历史最优,进行下次搜索,这样求解过程中的粒子群搜索能力更强,以增强算法的成功率和运算速度、收敛性。通过对测试函数和工程实例进行仿真测试,并与标准粒子群算法对比,结果表明该算法是有效可行的。 相似文献
19.