首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a magnetomechanical device that exhibits many properties of a laser. The device is formed by a nanocantilever and dynamically polarized paramagnetic nuclei of a solid sample in a strong external magnetic field. The corresponding quantum oscillator and effective two-level systems are coupled by the magnetostatic dipole-dipole interaction between a permanent magnet on the cantilever tip and the magnetic moments of the spins, so that the entire system is effectively described by the Jaynes-Cummings model. We consider the possibility of observing transient and cw lasing in this system, and show how these processes can be used to improve the sensitivity of magnetic resonance force microscopy.  相似文献   

2.
3.
Silicon is promising for spin-based quantum computation because nuclear spins, a source of magnetic noise, may be eliminated through isotopic enrichment. Long spin decoherence times T2 have been measured in isotope-enriched silicon but come far short of the T2=2T1 limit. The effect of nuclear spins on T2 is well established. However, the effect of background electron spins from ever present residual phosphorus impurities in silicon can also produce significant decoherence. We study spin decoherence decay as a function of donor concentration, 29Si concentration, and temperature using cluster expansion techniques specifically adapted to the problem of a sparse dipolarly coupled electron spin bath. Our results agree with the existing experimental spin echo data in Si:P and establish the importance of background dopants as the ultimate decoherence mechanism in isotope-enriched silicon.  相似文献   

4.
We demonstrate an alternative nuclear spin resonance using a radio frequency (rf) electric field [nuclear electric resonance (NER)] instead of a magnetic field. The NER is based on the electronic control of electron spins forming a domain structure. The rf electric field applied to a gate excites spatial oscillations of the domain walls and thus temporal oscillations of the hyperfine field to nuclear spins. The rf power and burst duration dependence of the NER spectrum provides insight into the interplay between nuclear spins and the oscillating domain walls.  相似文献   

5.
An efficient scheme is proposed to carry out gate operations on an array of trapped Yb+ ions, based on a previous proposal using both electronic and nuclear degrees of freedom in a magnetic field gradient. For this purpose we consider the Paschen-Back regime (strong magnetic field) and employ a high-field approximation in this treatment. We show the possibility to suppress the unwanted coupling between the electron spins by appropriately swapping states between electronic and nuclear spins. The feasibility of generating the required high magnetic field is discussed.  相似文献   

6.
We demonstrate local manipulation and detection of nuclear spin coherence in semiconductor quantum wells by an optical pump-probe technique combined with pulse rf NMR. The Larmor precession of photoexcited electron spins is monitored by time-resolved Kerr rotation (TRKR) as a measure of nuclear magnetic field. Under the irradiation of resonant pulsed rf magnetic fields, Rabi oscillations of nuclear spins are traced by TRKR signals. The intrinsic coherence time evaluated by a spin-echo technique reveals the dependence on the orientation of the magnetic field with respect to the crystalline axis as expected by the nearest neighbor dipole-dipole interaction.  相似文献   

7.
The problem of how single central spins interact with a nuclear spin bath is essential for understanding decoherence and relaxation in many quantum systems, yet is highly nontrivial owing to the many-body couplings involved. Different models yield widely varying time scales and dynamical responses (exponential, power-law, gaussian, etc.). Here we detect the small random fluctuations of central spins in thermal equilibrium [holes in singly charged (In,Ga)As quantum dots] to reveal the time scales and functional form of bath-induced spin relaxation. This spin noise indicates long (400 ns) spin correlation times at a zero magnetic field that increase to ~5 μs as dominant hole-nuclear relaxation channels are suppressed with small (100 G) applied fields. Concomitantly, the noise line shape evolves from Lorentzian to power law, indicating a crossover from exponential to slow [~1/log(t)] dynamics.  相似文献   

8.
We study theoretically the full counting statistics of electron transport through a quantum dot weakly coupled to two ferromagnetic leads, in which an effective nuclear-spin magnetic field originating from the configuration of nuclear spins is considered. We demonstrate that the quantum coherence between the two singly-occupied eigenstates and the spin polarization of two ferromagnetic leads play an important role in the formation of super-Poissonian noise. In particular, the orientation and magnitude of the effective field have a significant influence on the variations of the values of high-order cumulants, and the variations of the skewness and kurtosis values are more sensitive to the orientation and magnitude of the effective field than the shot noise. Thus, the high-order cumulants of transport current can be used to qualitatively extract information on the orientation and magnitude of the effective nuclear-spin magnetic field in a single quantum dot.  相似文献   

9.
We study a large ensemble of nuclear spins interacting with a single electron spin in a quantum dot under optical excitation and photon detection. At the two-photon resonance between the two electron-spin states, the detection of light scattering from the intermediate exciton state acts as a weak quantum measurement of the effective magnetic (Overhauser) field due to the nuclear spins. In a coherent population trapping state without light scattering, the nuclear state is projected into an eigenstate of the Overhauser field operator, and electron decoherence due to nuclear spins is suppressed: We show that this limit can be approached by adapting the driving frequencies when a photon is detected. We use a Lindblad equation to describe the driven system under photon emission and detection. Numerically, we find an increase of the electron coherence time from 5 to 500 ns after a preparation time of 10 micros.  相似文献   

10.
We propose a scalable and practical implementation of spin amplification which does not require individual addressing nor a specially tailored spin network. We have demonstrated a gain of 140 in a solid-state nuclear spin system of which the spin polarization has been increased to 0.12 using dynamic nuclear polarization with photoexcited triplet electron spins. Spin amplification scalable to a higher gain opens the door to the single spin measurement for a readout of quantum computers as well as practical applications of nuclear magnetic resonance spectroscopy to infinitesimal samples which have been concealed by thermal noise.  相似文献   

11.
We review current proposals for six types of solid-state quantum computers. We discuss the general requirements for solid-state quantum computers and describe proposals which employ superconducting junctions, electron orbitals in quantum dots, electron spin resonance, nuclear spins of impurity atoms, and nuclear spins in a crystal lattice. We also describe our proposed nuclear spin quantum computer based on magnetic resonance force microscopy. Finally, we describe our numerical method for modeling quantum transformations with a large number (up to 1000) of qubits.  相似文献   

12.
The main source of decoherence for an electron spin confined to a quantum dot is the hyperfine interaction with nuclear spins. To analyze this process theoretically we diagonalize the central spin Hamiltonian in the high magnetic B-field limit. Then we project the eigenstates onto an unpolarized state of the nuclear bath and find that the resulting density of states has Gaussian tails. The level spacing of the nuclear sublevels is exponentially small in the middle of each of the two electron Zeeman levels but increases superexponentially away from the center. This suggests to select states from the wings of the distribution when the system is projected on a single eigenstate by a measurement to reduce the noise of the nuclear spin bath. This theory is valid when the external magnetic field is larger than a typical Overhauser field at high nuclear spin temperature.  相似文献   

13.
Electron and nuclear spins are very promising candidates to serve as quantum bits (qubits) for proposed quantum computers, as the spin degrees of freedom are relatively isolated from their surroundings and can be coherently manipulated, e.g., through pulsed electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR). For solid-state spin systems, impurities in crystals based on carbon and silicon in various forms have been suggested as qubits, and very long relaxation rates have been observed in such systems. We have investigated a variety of these systems at high magnetic fields in our multifrequency pulsed EPR/ENDOR (electron nuclear double resonance) spectrometer. A high magnetic field leads to large electron spin polarizations at helium temperatures, giving rise to various phenomena that are of interest with respect to quantum computing. For example, it allows the initialization of both the electron spin as well as hyperfine-coupled nuclear spins in a well-defined state by combining millimeter and radio-frequency radiation. It can increase the T 2 relaxation times by eliminating decoherence due to dipolar interaction and lead to new mechanisms for the coherent electrical readout of electron spins. We will show some examples of these and other effects in Si:P, SiC:N and nitrogen-related centers in diamond.  相似文献   

14.
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.  相似文献   

15.
In this review, we briefly review recent works on hybrid(nano) opto-mechanical systems that contain both mechanical oscillators and diamond nitrogen-vacancy(NV) centers. We also review two different types of mechanical oscillators. The first one is a clamped mechanical oscillator, such as a cantilever, with a fixed frequency. The second one is an optically trapped nano-diamond with a built-in nitrogen-vacancy center. By coupling mechanical resonators with electron spins, we can use the spins to control the motion of mechanical oscillators. For the first setup, we discuss two different coupling mechanisms, which are magnetic coupling and strain induced coupling. We summarize their applications such as cooling the mechanical oscillator, generating entanglements between NV centers, squeezing spin ensembles etc. For the second setup, we discuss how to generate quantum superposition states with magnetic coupling, and realize matter wave interferometer. We will also review its applications as ultra-sensitive mass spectrometer. Finally, we discuss new coupling mechanisms and applications of the field.  相似文献   

16.
A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal equilibrium in the earth's magnetic field. Simultaneous 19F and 1H NMR detection on a sub-milliliter sample of a fluorinated alkyne at millimolar concentration (~10(18) nuclear spins) was realized with just one single scan. A highly resolved spectrum with a signal/noise ratio higher than 50:1 was obtained without using an auxiliary magnet or any form of radio frequency shielding.  相似文献   

17.
章鹏  刘琳  陈伟民 《物理学报》2013,62(17):177501-177501
针对磁性应力监测研究中力磁耦合关系有多种变化趋势且一直没有合理理论解释这一问题, 从磁性材料的微观磁畴运动出发, 根据磁致磁化过程, 详细分析了两种不同磁化状态下力致磁化的变化规律, 揭示出力磁耦合关系的变化特征, 进而提出磁化状态是导致力磁耦合关系差异的本质因素; 对工程上实际缆索用镀锌钢丝在不同磁化状态下进行了力磁耦合试验, 结果与理论一致: 力磁耦合关系随磁化状态的不同而不同, 本质上有效地解释了已有研究中力磁耦合关系的矛盾多样性. 关键词: 应力监测 磁化状态 力磁耦合 磁畴运动  相似文献   

18.
Ion flows (ion drag forces) acting on macroscopic-size particles play a significant role in a plasma containing macroparticles. It is shown that ion drag forces can explain the magnetomechanical effect. The formula is derived for determining the dependence of the moment of the magnetomechanical effect on the type and pressure of the gas, tube radius, current, and magnetic field. This formula is in satisfactory agreement with experimental data for discharges in argon and neon with a relatively low magnetization of electron motion. For a high magnetization, the measured values of the moment of the magnetomechanical effect exceed the calculated values, which can be due to the effect of magnetic field nonuniformity and inhomogeneity of the plasma near the solenoid ends.  相似文献   

19.
The signal in a nuclear magnetic resonance (NMR) experiment is highly sensitive to fluctuations of the environment of the sample. If, for example, the static magnetic field B 0, the amplitude and phase of radio frequency (rf) pulses, or the resonant frequency of the detection circuit are not perfectly stable and reproducible, the magnetic moment of the spins is altered and becomes a noisy quantity itself. This kind of noise depends on the presence of a signal, to which it is usually proportional. Since all the spins at a particular location in a sample experience the same environment at any given time, such multiplicative noise primarily affects the reproducibility of an experiment. It is mainly of importance in the indirect dimensions of a multidimensional experiment, when intense lines are suppressed with a phase cycle, or for difference spectroscopy techniques. Equivalently, experiments which are known to be problematic with regard to their reproducibility, like flow experiments or experiments with a mobile target, tend to be affected more strongly by multiplicative noise. In this article it is demonstrated how multiplicative noise can be identified and characterized using very simple, repetitive experiments. An error estimation approach is developed to give an intuitive, yet quantitative understanding of its properties. The consequences for multidimensional NMR experiments are outlined, implications for data analysis are shown, and strategies for the optimization of experiments are summarized. Author's address: Josef Granwehr, Sir Peter Mansfield Magnetic Resonance Center, School of Physics and Astronomy, Univesity of Nottingham, Nottingham NG7 2RD, UK  相似文献   

20.
In nonmagnetic metals the spin-spin interaction of the electrons and nuclei makes a strongly magnetic field and temperature T dependent contribution to the residual resistivity. The nuclei act as magnetic impurities. For magnetic metals (Tb, Ho, Dy) with a high internal magnetic field, the nuclear contribution to the resistivity vanishes at low temperatures T, where the nuclear spins are ordered, and saturates at high temperatures T, where the nuclear spins are disordered—the analog of the Schottky effect for the nuclear specific heat. The electron-nuclear interaction can destroy superconductivity in metals with low critical magnetic fields under conditions of ferromagnetic ordering of the nuclear spins. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 3, 193–197 (10 August 1996)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号